Spelling suggestions: "subject:"croups fuchsian"" "subject:"croups fuchsin""
1 |
Construção de superfícies utilizando o Teorema de Poincaré / Construction of surfaces using the Poincare´s Theorem.Oliveira Júnior, João de Deus 24 February 2010 (has links)
Made available in DSpace on 2015-03-26T13:45:31Z (GMT). No. of bitstreams: 1
texto completo.pdf: 1613593 bytes, checksum: 9f102a91f9dec62a3656d30b4f7a490c (MD5)
Previous issue date: 2010-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This study deals with the surface of the compact quotient M2=G where the surface M2 is either the Euclidean plane or the plane spherical or the hyperbolic plane, G is a group of isometries of their surfaces, and this group is generated by matching of edges of polygons. The Poincaré theorem that provides a method of finding the group of isometries G the functions that the pair of edges of the polygons involved. By using this theorem we construct two new pairings of generalized edges (Chapter 4) associated with the tessellations {12η 8,4} e {12μ 12,4}, respectively. These tessellations provide packing of spheres whose packing density is very close to the maximum 3/π. Such pairings are the starting point for finding codes with optimal transmission rates for Multiple-Input Multiple-Output (MIMO). / Este estudo aborda a construção de superfícies compactas pelo quociente M2/G onde a superfície M2 ou é o plano euclidiano, ou é o plano esférico, ou é o plano hiperbólico, G é um grupo de isometrias das respectivas superfícies e esse grupo é gerado pelos emparelhamentos de arestas dos polígonos. O Teorema de Poincaré fornece um método de encontrar o grupo de isometrias G que consiste das funções de emparelhamento de arestas dos polígonos associados. Mediante o uso deste teorema nós construímos dois novos emparelhamentos de arestas generalizados (Capítulo 4), associados as tesselações {12η 8,4} e {12μ 12,4}, respectivamente. Estas tesselações fornecem empacotamento de esferas cuja densidade de empacotamento é bem próxima do valor máximo 3/π. Tais emparelhamentos são o ponto de partida para a busca de códigos com ótimas taxas de transmissão para canais de múltiplas entradas e múltiplas e saídas (MIMO).
|
Page generated in 0.0467 seconds