• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Construção de superfícies utilizando o Teorema de Poincaré / Construction of surfaces using the Poincare´s Theorem.

Oliveira Júnior, João de Deus 24 February 2010 (has links)
Made available in DSpace on 2015-03-26T13:45:31Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1613593 bytes, checksum: 9f102a91f9dec62a3656d30b4f7a490c (MD5) Previous issue date: 2010-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This study deals with the surface of the compact quotient M2=G where the surface M2 is either the Euclidean plane or the plane spherical or the hyperbolic plane, G is a group of isometries of their surfaces, and this group is generated by matching of edges of polygons. The Poincaré theorem that provides a method of finding the group of isometries G the functions that the pair of edges of the polygons involved. By using this theorem we construct two new pairings of generalized edges (Chapter 4) associated with the tessellations {12η 8,4} e {12μ 12,4}, respectively. These tessellations provide packing of spheres whose packing density is very close to the maximum 3/π. Such pairings are the starting point for finding codes with optimal transmission rates for Multiple-Input Multiple-Output (MIMO). / Este estudo aborda a construção de superfícies compactas pelo quociente M2/G onde a superfície M2 ou é o plano euclidiano, ou é o plano esférico, ou é o plano hiperbólico, G é um grupo de isometrias das respectivas superfícies e esse grupo é gerado pelos emparelhamentos de arestas dos polígonos. O Teorema de Poincaré fornece um método de encontrar o grupo de isometrias G que consiste das funções de emparelhamento de arestas dos polígonos associados. Mediante o uso deste teorema nós construímos dois novos emparelhamentos de arestas generalizados (Capítulo 4), associados as tesselações {12η 8,4} e {12μ 12,4}, respectivamente. Estas tesselações fornecem empacotamento de esferas cuja densidade de empacotamento é bem próxima do valor máximo 3/π. Tais emparelhamentos são o ponto de partida para a busca de códigos com ótimas taxas de transmissão para canais de múltiplas entradas e múltiplas e saídas (MIMO).
2

Emparelhamento de arestas de polígonos gerados por grafos / Side-pairing of polygons generated by graphs

Silva, Gheyza Ferreira da 24 February 2011 (has links)
Made available in DSpace on 2015-03-26T13:45:33Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1007963 bytes, checksum: 8fb51039076c92104d50598359cf19d8 (MD5) Previous issue date: 2011-02-24 / This work has as main objective the study of side-pairing patterns for hyperbolic polygons with 12g−6 edges and angles 2π/3 generated by trivalent graphs, in the case when the quotient of the hyperbolic plane by a Fuchsian group Γ (generated by the side-pairing of the polygon), H2/Γ , is a closed surface of genus g, g ≥ 2. So we did a study in case of g = 2, based on [10] and for the case of g = 3, based on [17]. In this work, we deduce two ways to get closed paths in the trivalent graphs cited in [10] and [17] and we contribute with exemples and results for cases of g > 3. Moreover, we find generalizations for some of these side-pairing patterns. / Este trabalho tem como objetivo principal o estudo de emparelhamentos de arestas para polígonos hiperbólicos com 12g − 6 arestas e ângulos iguais a 2π/3 gerados por meio de grafos trivalentes, no caso em que o quociente do plano hiperbólico por um grupo Fuchsiano Γ (gerado pelo emparelhamento do polígono), H2/Γ , é uma superfície fechada de gênero g, g ≥ 2. Assim, fizemos um estudo para o caso de g = 2 baseado em [10] e para o caso de g = 3, baseado em [17]. Neste trabalho, nós deduzimos duas formas de obter os caminhos fechados nos grafos trivalentes citados em [10] e [17] e contribuímos com exemplos e resultados para casos em que g > 3. Além disso, encontramos generalizações para alguns desses emparelhamentos de arestas.

Page generated in 0.1694 seconds