• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Regulation of Growth Factor Signaling in Drosophila Development and Disease

Lindner, Jonathan Ryan 2010 December 1900 (has links)
Developmental signaling pathways have many diverse roles throughout the life of an organism. The proper regulation of these pathways is essential for normal development, and misregulation can lead to diseases such as cancer. Heparan sulfate proteoglycans function to modulate growth factor signaling in many biological processes by acting as co-receptors, or by influencing ligand distribution. The heparan sulfate proteoglycan Trol, the Drosophila Perlecan homolog, is known to modulate signaling in a population of neuroblasts in the developing Drosophila central nervous system. My studies aim to determine the function Trol has in regulating signaling pathways during development. trol mutants are examined to determine how various mutant alleles impact signaling in several different developmental contexts. The role growth factor pathways play during induction of a Drosophila prostate cancer model is also examined. Gene expression profiles are determined for two types of prostate model overproliferation. Trol is shown to be able to differentially regulate multiple signaling pathways during several developmental processes. The Drosophila prostate cancer model is also shown to have many characteristics similar to those of human prostate cancer, and that signaling and proteoglycan expression are impacted by aberrant overgrowth in the model. My results indicate that Trol is able to specifically modulate different signaling pathways depending on the tissue and developmental context.
2

Role of Heparan Sulfate Structure in FGF-Receptor Interactions and Signaling

Jastrebova, Nadja January 2008 (has links)
<p>Heparan sulfate (HS) belongs to the glycosaminoglycan family of polysaccharides and is found attached to protein cores on cell surfaces and in the extracellular matrix. The HS backbone consists of alternating hexuronic acid and glucosamine units and undergoes a number of modification reactions creating HS chains with alternating highly and low modified domains, where high degree of modification correlates with high negative charge. Fibroblast growth factors (FGFs) and their receptors (FRs) both bind to HS, which affect formation of the FGF–FR complexes on the cell surfaces. Activated FRs can trigger several intracellular signaling pathways leading thereby to diverse cellular responses. </p><p>Work presented in this thesis focuses on the effect of HS and its structures on FGF–FR complex formation and FGF-induced signaling. Studies with short, highly modified oligosaccharides and FGF1 and 2 combined with FR1c, 2c, 3c or 4 showed a correlation between the overall degree of modification and amount/stability of FGF–FR complexes. Our findings imply that several HS structures, differently modified but with the same negative charge density are equal in their ability to support complex formation. Co-application of oligosaccharides with FGF2 to HS-deficient cells and investigation of the thereby induced cell signaling confirmed our findings with a cell-free system. The oligosaccharide with the highest modification degree displayed the biggest impact on cell signaling, which was FGF2 concentration dependent. Studies with long HS polysaccharides with preserved high and low modified domains suggest that the proportion between these two types of domains and also the structure of the low modified domains are of importance for the FGF–HS–FR complex formation and cell activation capacity. </p><p>This work illuminates several aspects in how HS structure influences the interplay between FGFs and FRs and contributes to the understanding of what factors affect a cell’s response following FGF stimulation.</p>
3

Syndecan - Regulation and Function of its Glycosaminoglycan Chains

Eriksson, Anna S. January 2013 (has links)
The cell surface is an active area where extracellular molecules meet their receptors and affect the cellular fate by inducing for example cell proliferation and adhesion. Syndecans and integrins are two transmembrane molecules that have been suggested to fine-tune these activities, possibly in cooperation. Syndecans are proteoglycans, i.e. proteins with specific types of carbohydrate chains attached. These chains are glycosaminoglycans and either heparan sulfate (HS) or chondroitin sulfate (CS). Syndecans are known to influence cell adhesion and signaling. Integrins in turn, are important adhesion molecules that connect the extracellular matrix with the cytoskeleton, and hence can regulate cell motility. In an attempt to study how the two types of glycosaminoglycans attached to syndecan-1 can interact with integrins, a cell based model system was used and functional motility assays were performed. The results showed that HS, but not CS, on the cell surface was capable of regulating integrin-mediated cell motility. Regulation of intracellular signaling is crucial to prevent abnormal cellular behavior. In the second part of this thesis, the aim was to see how the presentation of glycosaminoglycan chains to the FGF signaling complex could affect the cellular response. When attached to the plasma membrane via syndecan-1, CS chains could support the intracellular signaling, although not promoting as strong signals as HS. When glycosaminoglycans were attached to free ectodomains of syndecan-1, both types of chains sequestered FGF2 from the receptors to the same extent, pointing towards functional overlap between CS and HS. To further study the interplay between HS and CS, their roles in the formation of pharyngeal cartilage in zebrafish were established. HS was important during chondrocyte intercalation and CS in the formation of the surrounding extracellular matrix. Further, the balance between the biosynthetic enzymes determined the ratio of HS and CS, and HS biosynthesis was prioritized over CS biosynthesis. The results presented in this thesis provide further insight into the regulation of HS biosynthesis, as well as the roles of both HS and CS on the cell surface. It is evident, that in certain situations there is a strict requirement for a certain HS structure, albeit in other situations there is a functional overlap between HS and CS.
4

Dietary energy balance modulates growth factor signaling during multistage epithelial carcinogenesis in mouse skin

Moore, Tricia Wallace 14 February 2012 (has links)
Energy balance refers to the relationship between energy intake and energy expenditure. Epidemiological studies have established a clear association between energy balance and cancer, however the underlying mechanisms are unclear. The objective of the current study was to evaluate the impact of caloric consumption on epithelial carcinogenesis and identify potential mechanisms of inhibition or enhancement. Using ICR female mice, we demonstrated that positive energy balance enhanced, while negative energy balance inhibited susceptibility to multistage carcinogenesis in mouse skin. We next evaluated diet-induced changes in the epidermal proliferative response. Calorie restriction (CR) significantly reduced epidermal hyperproliferation, in the presence and absence of tumor promotion, as compared to diet-induced obesity (DIO). Additional studies were conducted to determine the impact of dietary manipulation on TPA-induced growth factor signaling. CR reduced, while DIO increased insulin like growth factor-1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) activation, which subsequently modulated signaling downstream to Akt and mTOR. These diet-induced changes in growth factor signaling were confirmed under steady-state conditions in multiple epithelial tissues (i.e., skin, liver and dorsolateral prostate) in multiple mouse strains (FVB/N, C57BL/6 and ICR). Further analyses demonstrated that caloric consumption directly correlated with levels of cell cycle progression related proteins and inversely correlated with levels of cell cycle inhibitory proteins. Genetic reduction of circulating IGF-1, liver IGF-1 deficient (LID) mouse model, inhibited two-stage skin carcinogenesis, reduced epidermal hyperproliferation and attenuated IGF-1R and EGFR growth factor signaling during tumor promotion, similar to CR, suggesting a potential for IGF-1R and EGFR crosstalk. Further studies, demonstrated that IGF-1 induced EGFR activation in cultured mouse keratinocytes, possibly due to IGF-1R and EGFR heterodimerization or IGF-1 induced changes in EGFR mRNA expression. In vivo, CR reduced, while DIO increased IGF-1R and EGFR association during tumor promotion. Furthermore, CR attenuated EGFR ligand mRNA expression both in the presence and absence of TPA treatment. Collectively, these findings suggest that dietary energy balance modulates epithelial carcinogenesis, at least in part due to diet-induced changes in levels of circulating IGF-1, which then modulate IGF-1R and EGFR crosstalk and downstream signaling to cell cycle related proteins, subsequently altering epidermal hyperproliferation. / text
5

Role of Heparan Sulfate Structure in FGF-Receptor Interactions and Signaling

Jastrebova, Nadja January 2008 (has links)
Heparan sulfate (HS) belongs to the glycosaminoglycan family of polysaccharides and is found attached to protein cores on cell surfaces and in the extracellular matrix. The HS backbone consists of alternating hexuronic acid and glucosamine units and undergoes a number of modification reactions creating HS chains with alternating highly and low modified domains, where high degree of modification correlates with high negative charge. Fibroblast growth factors (FGFs) and their receptors (FRs) both bind to HS, which affect formation of the FGF–FR complexes on the cell surfaces. Activated FRs can trigger several intracellular signaling pathways leading thereby to diverse cellular responses. Work presented in this thesis focuses on the effect of HS and its structures on FGF–FR complex formation and FGF-induced signaling. Studies with short, highly modified oligosaccharides and FGF1 and 2 combined with FR1c, 2c, 3c or 4 showed a correlation between the overall degree of modification and amount/stability of FGF–FR complexes. Our findings imply that several HS structures, differently modified but with the same negative charge density are equal in their ability to support complex formation. Co-application of oligosaccharides with FGF2 to HS-deficient cells and investigation of the thereby induced cell signaling confirmed our findings with a cell-free system. The oligosaccharide with the highest modification degree displayed the biggest impact on cell signaling, which was FGF2 concentration dependent. Studies with long HS polysaccharides with preserved high and low modified domains suggest that the proportion between these two types of domains and also the structure of the low modified domains are of importance for the FGF–HS–FR complex formation and cell activation capacity. This work illuminates several aspects in how HS structure influences the interplay between FGFs and FRs and contributes to the understanding of what factors affect a cell’s response following FGF stimulation.
6

Evaluation of the Effects of Therapeutic Digital Hypothermia on Lamellar Signaling in Sepsis Related Laminitis

Dern, Kathryn V. 10 August 2017 (has links)
No description available.

Page generated in 0.1354 seconds