• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 7
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 12
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aspekte der Schilddrüsenphysiologie am Beispiel von Iod, TSHR und IGF-IR

Haubold, Kathrin 22 March 2013 (has links) (PDF)
Im Rahmen der vorliegenden Arbeit wurden zentrale Aspekte der Schilddrüsenphysiologie am Beispiel von Iod, TSHR und IGF-IR untersucht. Der Pathologie der Schilddrüsenautonomie liegen konstitutiv aktivierende Mutationen des TSHR zugrunde. Die Prävalenz der Schilddrüsenautonomie ist in Iod armen Regionen deutlich erhöht. Als Ursache für Mutationen im TSHR wird vermehrter oxidativer Stress unter Iodmangel angenommen (Krohn et al. 2007; Maier et al. 2007). Die genauen molekularen Mechanismen konnten bisher noch nicht hinreichend aufgeklärt werden. In diesem Zusammenhang interessierte uns inwiefern eine ausreichende Iodversorgung die Entwicklung bereits autonomer Zellen beeinflussen kann. Das verwendete in vitro Modell der Schilddrüsenautonomie mit konstitutiv aktivierenden Mutationen im TSHR wurde bereits in früheren Arbeiten charakterisiert (Führer et al. 2003). Mit Hilfe von Microarray Untersuchungen und Funktionsanalysen, konnten wir deutliche Genregulationen durch Iod an Hand von normalen und autonomen Thyreozyten erkennen. Besonders auffällig war die differentielle Regulation von Genen, die z.B. in der Proliferation, dem Zellzyklus und metabolischen Prozessen involviert sind. Wesentlich ist, dass trotz einer konstitutiven Aktivierung des TSHR Iod dennoch die Proliferation und Funktion einer frühzeitigen Schilddrüsenautonomie herabsetzt. Die physiologische Rolle des IGF-IR in der Schilddrüsenphysiologie in vivo wurde noch nicht systematisch erforscht. Um die Rolle des IGF-IR in der Schilddrüse im Hinblick auf deren Entwicklung und Metabolismus näher zu untersuchen, wurde ein Mausmodell generiert bei dem der IGF-IR schilddrüsenspezifisch über eine durch den TG Promoter regulierte Cre Rekombinase (Igf1rTgCre) ausgeschaltet wurde. Ziel war es nun zu untersuchen, welche Folgen ein thyreoidaler Igf1r Knockout auf die Funktion, Morphologie und Entwicklung der murinen Schilddrüse und metabolischer Parameter hat. Dieser Knockout zeigte in den Mäusen keine Veränderungen des Schilddrüsengewichtes und der Serum T3 Werte, wobei das Serum T4 nach 8 Wochen leicht absank, nach 4 Monaten aber wieder Normalwerte zeigte. Allerdings waren die Serum TSH Werte bis zu 9fach erhöht. Die Histologie der Igf1r-/- Mäuse zeigten mit einer Rate von 86% papilläre Schilddrüsenhyperplasien sowie eine starke Heterogenität der Follikelstruktur, die auch bei den Igf1r-/- Mäuse zu finden war. Die molekulare Kompensation des Igf1r Knockouts in der Schilddrüse besonders durch TSH konnte durch unsere Untersuchungen nicht hinreichend geklärt werden. Die Daten aus unseren Ergebnissen und eines reversen Mausmodells (Überexpression des IGF-IR und IGF-I) (Clement et al. 2001) weisen daraufhin, dass das IGF-IR Signal weniger essentiell für die Schilddrüsenhormonsynthese ist als für das Aufrechterhalten einer Homöostase und normaler Schilddrüsenmorphogenese.
2

Rôle de Klotho dans la chimiosensibilisation des liposarcomes dédifférenciés : étude des voies de signalisation impliquées / Deciphering the signaling pathways involved in Klotho-mediated chemosensitization of dedifferentiated liposarcomas

Delcroix, Vanessa 08 December 2017 (has links)
La protéine Klotho (KL) possède des propriétés anti-vieillissement et anti-cancer. Les données cliniques montrent que l’expression de KL est associée à une meilleure survie des patients atteints de liposarcome. De plus, elle est réduite par rapport au tissu sain dans les liposarcomes dédifférenciés (DDLPS), un type de tumeur maligne rare mais de mauvais pronostic. Nos résultats montrent que KL sensibilise les DDLPS aux chimiothérapies (gemcitabine, navitoclax). L’abondance de KL dans les tumeurs pourrait donc servir de biomarqueur pour prédire l’efficacité des chimiothérapies et mettre en place une médecine plus personnalisée. De plus, des médicaments utilisés pour d’autres pathologies et connus pour stimuler l’expression de KL (Cozaar) pourraient être testés en association avec la chimiothérapie. Enfin, inspirés par le mode d’action de KL, nous avons testé la combinaison de la gemcitabine avec le navitoclax, qui s’est révélée très efficace sur les DDLPS. / Klotho (KL) is both an anti-ageing and anti-cancer protein. Analysis of clinical data highlights that high expression of KL is associated with a better overall survival of liposarcoma patients. Moreover, its expression in downregulated in dedifferentiated liposarcomas (DDLPS), a rare type of tumor associated with a poor prognosis due to high chemoresistance. Our results show that KL sensitizes DDLPS cells to chemotherapeutic agents (gemcitabine, navitoclax). So, abundance of KL in tumoral tissues could serve as a biomarker for predicting gemcitabine efficacy and so, could help for establishing personalized therapy. Moreover, drugs increasing KL expression could be tested in combination with chemotherapy. Based on KL mechanism of action, we also highlight that the combination between gemcitabine and navitoclax is very effective for killing DDLPS cells.
3

HIF-2a: A Regulator of Autonomous Growth in Ovarian Carcinoma

Omar, Tahmina 19 September 2012 (has links)
Cancer develops in many organs and tissues in the body through genetic and environmental modifications to acquire the hallmarks of cancer. The hallmarks of cancer allow the cells to become malignant and progress to a tumorigenic state. It has previously been shown in various carcinomas that HIF-2a, a key component in hypoxia adaptation, has a role in autonomous growth, the first hallmark of cancer. Ovarian cancer is the most lethal of the gynecological malignancies and accounts for 3% of new cases in women annually but is the fifth most common cause of death due to cancer. Here, it is shown in two ovarian carcinoma cell lines that HIF-2a is involved in in vitro and in vivo growth. It is also shown that the effect of HIF-2a is due to its role in autonomous growth and not vascularization with the use of in vitro spheroids. From recent findings in the laboratory the oxygen-stimulated translation initiation complex was discovered and HIF-2a is one of its components. In the absence of HIF-2a there is a downregulation in translation in hypoxia in ovarian carcinoma. This is also seen in a HIF-2a translational target, IGF1R and its downstream signaling pathway, which may be involved in autonomous growth as well as other hallmarks of cancer. Taken together, the data in this thesis presents the importance of HIF-2a in autonomous growth and cancer progression in ovarian carcinoma, as well as verifying its role in translation.
4

HIF-2a: A Regulator of Autonomous Growth in Ovarian Carcinoma

Omar, Tahmina 19 September 2012 (has links)
Cancer develops in many organs and tissues in the body through genetic and environmental modifications to acquire the hallmarks of cancer. The hallmarks of cancer allow the cells to become malignant and progress to a tumorigenic state. It has previously been shown in various carcinomas that HIF-2a, a key component in hypoxia adaptation, has a role in autonomous growth, the first hallmark of cancer. Ovarian cancer is the most lethal of the gynecological malignancies and accounts for 3% of new cases in women annually but is the fifth most common cause of death due to cancer. Here, it is shown in two ovarian carcinoma cell lines that HIF-2a is involved in in vitro and in vivo growth. It is also shown that the effect of HIF-2a is due to its role in autonomous growth and not vascularization with the use of in vitro spheroids. From recent findings in the laboratory the oxygen-stimulated translation initiation complex was discovered and HIF-2a is one of its components. In the absence of HIF-2a there is a downregulation in translation in hypoxia in ovarian carcinoma. This is also seen in a HIF-2a translational target, IGF1R and its downstream signaling pathway, which may be involved in autonomous growth as well as other hallmarks of cancer. Taken together, the data in this thesis presents the importance of HIF-2a in autonomous growth and cancer progression in ovarian carcinoma, as well as verifying its role in translation.
5

Molecular Imaging and Sensing Using Plasmonic Nanoparticles

Crow, Matthew James January 2010 (has links)
<p>Noble metal nanoparticles exhibit unique optical properties that are beneficial to a variety of applications, including molecular imaging. The large scattering cross sections of nanoparticles provide high contrast necessary for biomarkers. Unlike alternative contrast agents, nanoparticles provide refractive index sensitivity revealing information regarding the local cellular environment. Altering the shape and composition of the nanoparticle shifts the peak resonant wavelength of scattered light, allowing for implementation of multiple spectrally distinct tags. In this project, nanoparticles that scatter in different spectral windows are functionalized with various antibodies recognizing extra-cellular receptors integral to cancer progression. A hyperspectral imaging system is developed, allowing for visualization and spectral characterization of cells labeled with these conjugates. Various molecular imaging and microspectroscopy applications of plasmonic nanoparticles are then investigated. First, anti-EGFR gold nanospheres are shown to quantitatively measure receptor expression with similar performance to fluorescence assays. Second, anti-EGFR gold nanorods and novel anti-IGF-1R silver nanospheres are implemented to indicate local cellular refractive indices. Third, because biosensing capabilities of nanoparticle tags may be limited by plasmonic coupling, polarization mapping is investigated as a method to discern these effects. Fourth, plasmonic coupling is tested to monitor HER-2 dimerization. Experiments reveal the interparticle conformation of proximal HER-2 bound labels, required for plasmonic coupling-enhanced dielectric sensing. Fifth, all three functionalized plasmonic tags are implemented simultaneously to indicate clinically relevant cell immunophenotype information and changes in the cellular dielectric environment. Finally, flow cytometry experiments are conducted utilizing the anti-EGFR nanorod tag to demonstrate profiling of receptor expression distribution and potential increased multiplexing capability.</p> / Dissertation
6

Spatial and temporal distribution of growth factors receptors in the callus: Implications for improvement of distraction osteogenesis

Ishiguro, Naoki, Kawasumi, Motoaki, Kitoh, Hiroshi, Siwicka, Karolina A 08 1900 (has links)
No description available.
7

Regulation Of Membrane-Type 1 Matrix Metalloproteinase In Prostate Cancer

Sroka, Isis Calsoyas January 2007 (has links)
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a metalloproteinase which becomes upregulated in prostate cancer and has been implicated in processes of prostate cancer metastasis. Here, we show that MT1-MMP is minimally expressed in nonmalignant primary prostate cells, moderately expressed in DU-145 cells, and highly expressed in invasive PC-3 and PC-3N cells. Using MT1-MMP promoter reporters and mobility shift assays, we show that Sp1 regulates MT1-MMP expression in DU-145, PC-3, and PC-3N cells and in PC3-N cells using chromatin immunoprecipitation analysis and silencing RNA. Investigation of signaling pathways in these cells showed that DU-145 cells express constitutively phosphorylated extracellular stress-regulated kinase (ERK), whereas PC-3 and PC-3N cells express constitutively phosphorylated AKT/PKB and c-Jun NH2 terminal kinase (JNK). We show that MT1-MMP and Sp1 levels are decreased in PC-3 and PC-3N cells when PI-3K and JNK are inhibited, and that MT1-MMP levels are decreased in DU-145 cells when MEK is inhibited. Transient transfection of PC-3 and PC-3N cells with a dominant-negative JNK or p85, and DU-145 cells with a dominant negative ERK, reduced MT1-MMP promoter activity. We also identified the insulin-like growth factor (IGF-1R) as an upstream regulatory component of MT1-MMP in PC-3N and LNCaP cells, which express high and low levels of the enzyme, respectively. Treatment of PC-3N cells with an IGF-1R specific inhibitor decreased MT1-MMP promoter activity, RNA and protein levels. Additionally, treatment of LNCaP cells with a synthetic androgen to increase IGF-1R levels and subsequent treatment with IGF-I increased MT1-MMP promoter activity, RNA and protein levels. Analysis of MT1-MMP and IGF-1R expression in human prostate cancer tissues demonstrated that MT1-MMP expression was high in the apical cytoplasmic regions of PIN and prostate cancer and less intense in the basalateral cytoplasmic membrane regions of benign glands. IGF-1R was expressed in normal glands and highly expressed in prostate cancer. In conclusion, we have identified several novel mechanisms regulating MT1-MMP expression in prostate cancer cell lines as well as differential localization of the enzyme in human prostate cancer tissues. These results provide insight into the complex mechanisms of prostate cancer metastasis and may be useful for developing future diagnostic procedures or therapies.
8

Insulin-like growth factor effects on vascular smooth muscle cells are in part modulated via a G protein coupled pathway

Perrault, Raissa 23 September 2010 (has links)
An important part of repair processes activated by vascular injury is the recruitment of vascular smooth muscle cells (SMC) from the existing contractile coat. Phenotypic modulation of SMCs enables these cells to proliferate and migrate into the vessel intima. Despite its importance in vessel repair, this plasticity of SMCs can also promote both the pathogenesis of atherosclerosis as well as neointimal formation following revascularization- induced injury. Vascular growth factors are major contributors to the migratory and proliferative responses to injury. IGF-1 is one such growth factor that elicits a response via its receptor, the IGF-1R, a classical tyrosine kinase receptor. However, it has been suggested that the IGF-1R may also be coupled to a heterotrimeric G protein and can thus initiate cellular responses via this alternate pathway. The objective of this study was to investigate the structural aspects of IGR-1R coupling to a heterotrimeric G protein in SMCs, as well as the contribution of this pathway to the cellular responses. In a porcine primary SMC culture model, IGF-1R co-precipitated with both the α- and β-subunits of a G protein, with the latter demonstrating activation dependent precipitation. The specific Gα class activated by IGF-1R was Gαi, in a manner that was independent of the activity of the tyrosine kinase. Both Gαi1 and Gαi2 directly interacted with the receptor. Gβγ mediated the activation of MAPK and its inhibition was sufficient to attenuate both the proliferation and migration of SMCs in vitro. In contrast, the contribution of Gαi was related to regulation of protein translation and histone modification. The data supports the conclusion that IGF-1 regulates the phenotype of vascular SMCs at least partially via a non-classical G protein-coupled receptor. Investigation into the individual subunits of the G protein complex led to the elucidation of a model in which both components play an integral role in the IGF-1 response, independent of the receptor tyrosine kinase activity. In one case, an interplay of specific Gαi-subunits leads to modulation of the VSMC translational and transcriptional responses, while in the other, release of the Gβγ-subunit activated the MAPK response in a manner that significantly contributes to both the migration and proliferation of SMCs.
9

Insulin-like growth factor effects on vascular smooth muscle cells are in part modulated via a G protein coupled pathway

Perrault, Raissa 23 September 2010 (has links)
An important part of repair processes activated by vascular injury is the recruitment of vascular smooth muscle cells (SMC) from the existing contractile coat. Phenotypic modulation of SMCs enables these cells to proliferate and migrate into the vessel intima. Despite its importance in vessel repair, this plasticity of SMCs can also promote both the pathogenesis of atherosclerosis as well as neointimal formation following revascularization- induced injury. Vascular growth factors are major contributors to the migratory and proliferative responses to injury. IGF-1 is one such growth factor that elicits a response via its receptor, the IGF-1R, a classical tyrosine kinase receptor. However, it has been suggested that the IGF-1R may also be coupled to a heterotrimeric G protein and can thus initiate cellular responses via this alternate pathway. The objective of this study was to investigate the structural aspects of IGR-1R coupling to a heterotrimeric G protein in SMCs, as well as the contribution of this pathway to the cellular responses. In a porcine primary SMC culture model, IGF-1R co-precipitated with both the α- and β-subunits of a G protein, with the latter demonstrating activation dependent precipitation. The specific Gα class activated by IGF-1R was Gαi, in a manner that was independent of the activity of the tyrosine kinase. Both Gαi1 and Gαi2 directly interacted with the receptor. Gβγ mediated the activation of MAPK and its inhibition was sufficient to attenuate both the proliferation and migration of SMCs in vitro. In contrast, the contribution of Gαi was related to regulation of protein translation and histone modification. The data supports the conclusion that IGF-1 regulates the phenotype of vascular SMCs at least partially via a non-classical G protein-coupled receptor. Investigation into the individual subunits of the G protein complex led to the elucidation of a model in which both components play an integral role in the IGF-1 response, independent of the receptor tyrosine kinase activity. In one case, an interplay of specific Gαi-subunits leads to modulation of the VSMC translational and transcriptional responses, while in the other, release of the Gβγ-subunit activated the MAPK response in a manner that significantly contributes to both the migration and proliferation of SMCs.
10

HIF-2a: A Regulator of Autonomous Growth in Ovarian Carcinoma

Omar, Tahmina January 2012 (has links)
Cancer develops in many organs and tissues in the body through genetic and environmental modifications to acquire the hallmarks of cancer. The hallmarks of cancer allow the cells to become malignant and progress to a tumorigenic state. It has previously been shown in various carcinomas that HIF-2a, a key component in hypoxia adaptation, has a role in autonomous growth, the first hallmark of cancer. Ovarian cancer is the most lethal of the gynecological malignancies and accounts for 3% of new cases in women annually but is the fifth most common cause of death due to cancer. Here, it is shown in two ovarian carcinoma cell lines that HIF-2a is involved in in vitro and in vivo growth. It is also shown that the effect of HIF-2a is due to its role in autonomous growth and not vascularization with the use of in vitro spheroids. From recent findings in the laboratory the oxygen-stimulated translation initiation complex was discovered and HIF-2a is one of its components. In the absence of HIF-2a there is a downregulation in translation in hypoxia in ovarian carcinoma. This is also seen in a HIF-2a translational target, IGF1R and its downstream signaling pathway, which may be involved in autonomous growth as well as other hallmarks of cancer. Taken together, the data in this thesis presents the importance of HIF-2a in autonomous growth and cancer progression in ovarian carcinoma, as well as verifying its role in translation.

Page generated in 0.0242 seconds