• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 171
  • 116
  • 14
  • 8
  • 7
  • 7
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 401
  • 401
  • 107
  • 106
  • 70
  • 69
  • 50
  • 47
  • 46
  • 44
  • 43
  • 43
  • 40
  • 39
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

THE REGULATION AND FUNCTION OF THE OVARIAN-DERIVED INSULIN-LIKE GROWTH FACTOR SYSTEM IN ZEBRAFISH (Danio rerio)

Irwin, David 13 December 2011 (has links)
Insulin-like growth factors (IGF) are known paracrine/autocrine regulators of ovarian development in teleosts. Initial studies investigated the hormonal and intracellular signal cascades involved in regulating the expression of ovarian-derived IGFs in zebrafish (Danio rerio). Quantitative real-time PCR was used to quantify the expression of igf3, igf2a, and igf2b in full grown immature (FG; 0.57-0.65 mm) and mid-vitellogenic (MV; 0.45-0.56 mm) follicles. Addition of the gonadotropin analogue human chorionic gonadotropin (hCG) and the adenylate cyclase activator forskolin increased igf3 expression in FG and MV follicles, but had no effect on igf2a or igf2b expression. The effects of hCG were blocked by the addition of the protein kinase A inhibitor H-89. Pituitary adenylate cyclase activating peptide stimulated a small increase in igf3 expression in FG follicles, while growth hormone and salmon gonadotropin releasing hormone had no effect on igf3, igf2a, or igf2b expression. Treatment with melittin, prostaglandin F2α, and prostaglandin E2 inhibited igf3 and igf2b expression in FG follicles whereas the protein kinase C activators, PMA and A23187, significantly inhibited igf3, igf2a, igf2b expression in FG and MV follicles. Secondary studies investigated the involvement of ovarian-derived IGFs in mediating the ovarian actions of gonadotropins on cell survival and steroidogenesis. Treatment of FG follicles with recombinant human IGF-I, hCG, or forskolin inhibited the induction of caspase-3/7 activity, which was used as a measure of apoptosis. The effects of hCG and forskolin on caspase-3/7 were attenuated by co-treatment with NVP-AEW54, an IGF-I receptor antagonist. hCG increased production of the maturation-inducing steroid 17α, 20β-dihydroxy-4-pregnen-3-one and co-treatment with NVP-AEW541 had no effect. These results suggest there is a high degree of hormonal specificity in regulating IGFs in the zebrafish ovary and the ovarian-derived IGFs, presumably IGF-III, are downstream mediators of gonadotropin-dependent cell survival, but are not involved in gonadotropin-induced steroidogenesis.
162

The Stress Response and Endocrine Mechanisms of Growth in Salmonids

Madison, Barry, Neil 07 September 2013 (has links)
This thesis is an investigation of the stress response of salmonid fish and the regulation of the endocrine mechanisms of growth during changes in physiological conditions. Controlled by the HPI axis, the stress response incurs extensive catabolic demand on endogenous metabolite stores at the expense of growth through catabolic actions under the assumed direction of cortisol. It is suspected that the stress response also suppresses the growth-promoting actions of the GH/IGF-I/IGFBP axis. The central theme of this thesis was to characterize the influence the stress response on the endocrine regulation of growth during conventional (e.g. emersion, salinity transfer) and unconventional stresses (e.g. competition, social interaction, parasite infection), using rainbow trout (Oncorhynchus mykiss) and Chinook salmon (Oncorhynchus tshawytscha) as models. Findings corroborate the inhibitive impact of chronic stress on growth through catabolism of endogenous metabolites in the presence of cortisol levels representative of moderate stress in salmonids. Trout in infected with Cryptobia salmositica, demonstrated similar evidence of pathogen-induced growth suppression via changes in catabolic elements within the GH/IGF-I/IGFBP axis in a similar manner to hypercorticoidic fish, but without elevated cortisol despite clear physical duress. Accompanying reduction in food intake and change to nutritional status influenced much of the growth-suppressing impacts observed on the endocrine axis during disease incidence. Moreover, Cryptobia infection inhibited cortisol signaling and production the pituitary and in the interrenals, respectively. In Chinook salmon, the endocrine response to stress was altered by parental breeding strategy and early rearing environment; traditional hatchery breeding and rearing methods impacted growth performance during physiological challenge when contrasted to mate choice cohorts. Rearing Chinook in a semi-natural channel environment revealed clear differences in performance between these fish stocks that were not observable in the hatchery environment. Moreover, social interaction and competition between mate choice and hatchery-bred salmon influenced the inhibitive effects of the stress response on growth performance, as well as the physiological responses to endocrine-regulated changes during smoltification. This thesis characterizes the novel regulatory actions of the stress response on the endocrine growth axis via regulation of both central and peripheral elements of the GH/IGF-I/IGFBP axis. / NSERC, OGS
163

Effect of growth hormone and therapeutic ultrasound on mandible and mandibular condyle

Khan, Imran Unknown Date
No description available.
164

Electrophysiological Properties of a Quail Neuroretina Cell Line (QNR/D): Effects of Growth Hormone?

Andres, Alexis D Unknown Date
No description available.
165

An investigation of endogenous ghrelin and growth hormone-releasing hormone following the consumption of two different relative doses of oral l-arginine

McCarthy, Amanda Marie Unknown Date
No description available.
166

Retinal Growth Hormone: An Autocrine/paracrine in the Developing Chick Retina

Lin, Wan-Ying Unknown Date
No description available.
167

Interference with biological rhythm : a novel approach to metabolic disorders in women

Karlsson, Roger January 1992 (has links)
Women seem to be largely protected against certain ‘welfare disorders’ such as cardiovacular disease and osteoporosis, during their fertile years.The metabolic changes observed during women’s non-menstrual states, i.e. during pregnancy, after the menopause and during use of oral contraceptives, indicate the importance of sex steroids and an undisturbed biological rhythm. Treatment with monophasic, combined oral contraceptives constitutes a model for the non-cyclic state.Growth hormone (GH) is a pituitary hormone that has major metabolic effects. The pattern of GH exposure to the target organ is of vital importance for the effects and changes in rhythm could possibly induce metabolic changes.Growth hormome, cholecystokinin (CCK), osteocalcin and angiotensinogen were used as markers for metabolic effects and the concentrations in serum were recorded in women during non-menstrual states. The clinical material comprised a total of 60 women: 18 healthy non-pregnant, 25 pregnant, one lactating woman and 16 postmenopausal women. Using a portable pump and a non-thrombogenic venous catheter, blood samples could be collected at 30-min intervals during 24-h periods. Furthermore, the effects of estrogen and GH in the regulation of angiotensinogen were investigated in an experimental model in the rat.Oral contraceptives were found to alter the secretion of GH towards a pattern of lower and more frequent peaks, though the total amount secreted during 24 h was unchanged. Oral contraceptives seem to induce a suppression of the 24-h concentrations of CCK, which may be important with respect to weight gain in some women. Osteocalcin in serum display a significant circadian variation. This emphasizes the need for careful timing of single point measurements and the value of continuous blood sampling. Oral contraceptives may reduce osteocalcin serum concentrations. The long-term effects on bone are unknown. During late pregnancy osteocalcin levels are extremely low, which could indicate osteoblast inhibition and reduced bone turnover. The mode of GH administration is important for the plasma concentration of angiotensinogen in the non-pregnant rat. Estrogen effects on this protein may be mediated via a modification of GH secretion. Oral contraceptives not only increase angiotensinogen concentrations in serum but also markedly enhance their variability. Further studies are needed to elucidate the relation between the individual pattern of angiotensinogen and hypertension. / <p>S. 1-42: sammanfattning, s. 43-88: 6 uppsatser</p> / digitalisering@umu
168

Nasal delivery of recombinant human growth hormone with pheroid technology / Dewald Steyn

Steyn, Johan Dewald January 2006 (has links)
Over the past couple of years there has been rapid progress in the development and design of safe and effective delivery systems for the administration of protein and peptide drugs. The effective delivery of these type of drugs are not always as simple as one may think, due to various inherent characteristics of these compounds. Due to the hydrophilic nature and molecular size of peptide and protein drugs, such as recombinant human growth hormone, they are poorly absorbed across mucosal epithelia, both transcellularly and paracellularly. This problem can be overcome by the inclusion of absorption enhancers in peptide and protein drug formulations but this is not necessarily the best method to follow. This investigation focussed specifically on the evaluation of the ability of the PheroidTM carrier system to transport recombinant human growth hormone across mucosal epithelia especially when administered via the nasal cavity. The PheroidTM delivery system is a patented system consisting of a unique submicron emulsion type formulation. The PheroidTM delivery system, based on PheroidTM technology, will for ease of reading be called Pheroid(s) only throughout the rest of this dissertation. The Pheroid carrier system is a unique microcolloidal drug delivery system. A Pheroid is a stable structure within a novel therapeutic system which can be manipulated in terms of morphology, structure, size and function. Pheroids consist mainly of plant and essential fatty acids and can entrap, transport and deliver pharmacologically active compounds and other useful substances to the desired site of action. The specific objectives of this study can be summarised as follows: a literature study on Pheroid technology; a literature study on chitosan and N-trimethyl chitosan chloride; a literature study on recombinant human growth hormone (somatropin); a literature study on nasal drug administration; formulation of a suitable Pheroid carrier; entrapment of somatropin in the Pheroid carrier, and in vivo evaluation of nasal absorption of somatropin in Sprague-Dawley rats. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2007.
169

Gene Conversions and Selection in the Gene Families of Primates

Petronella, Nicholas 11 January 2012 (has links)
We used the GENECONV program, the Hsu et al. (2010) method and phylogenetic analyses to analyze the gene conversions which occurred in the growth hormone, folate receptor and trypsin gene families of six primate species. Significant positive correlations were found between sequence similarity and conversion length in all but the trypsin gene family. Converted regions, when compared to non-converted ones, also displayed a significantly higher GC-content in the growth hormone and folate receptor gene families. Finally, all detected gene conversions were found to be less frequent in conserved gene regions and towards functionally important genes. This suggests that purifying selection is eliminating all gene conversions having a negative functional impact.
170

The role of the growth hormone/IGF-I system on islet cell growth and insulin action /

Robertson, Katherine. January 2007 (has links)
The study of diabetes mellitus is vital in this day and age because its incidence is increasing at an alarming rate. Diabetes results in the loss of function of beta-cells within the pancreas. Insulin resistance contributes to diabetes but the human body can compensate in various ways such as increasing the islet cell mass, glucose disposal and insulin secretion, in order to prevent the onset of diabetes. Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are two integral hormones important in both glucose homeostasis and islet cell growth. Early studies using cultured islet cells have demonstrated positive regulation of beta-cell growth by both GH and IGF-I. To evaluate their relevance on normal beta-cell growth, compensatory growth, as well as in insulin responsiveness, we have used two mouse models that represent opposite manipulations of the GH/IGF-I axis. Specifically, the growth hormone receptor gene deficient (GHR-/-) and the IGF-I overexpression (MT-IGF) mice, to help understand the role of glucose homeostasis and islet cell growth in the GH/IGF-I axis. GH is essential for somatic growth and development as well as maintaining metabolic homeostasis. It is known that GH stimulates normal islet cell growth. Moreover, GH may also participate in islet cell overgrowth and compensate for insulin resistance induced by obesity. To determine whether the islet cell overgrowth is dependent on GH signaling, we studied the response of GHR-/- mice to high-fat diet (HFD)-induced obesity. We also studied the insulin responsiveness in GHR-/- mice. On the other hand, IGF-I promotes embryonic development, postnatal growth and the maturation of various organ systems. The notion that IGF-I stimulates islet cell growth has been challenged in recent years by results from IGF-I and receptor gene targeted models. We have characterized MT-IGF mice which overexpress the IGF-I gene. / The results of our studies indicate that (1) GH is essential for normal islet cell growth, but not required for compensatory overgrowth of the islets in response to obesity, (2) GHR gene deficiency caused delayed insulin responsiveness in skeletal muscle; in contrast to elevated insulin sensitivity in the liver; (3) although overexpression does not stimulate islet cell growth, a chronic IGF-I elevation caused significant hypoglycemia, hypoinsulinemia, and improved glucose tolerance, (4) finally IGF-I overexpression mice are resistant to experimental diabetes.

Page generated in 0.0787 seconds