• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudos da interação entre a mortalina humana e as duas isoformas das co-chaperonas GrpEs / Interaction studies between human mortalin and its two co-chaperones GrpEs isoforms

Yoshida, Leonardo 28 March 2019 (has links)
As Hsp70 são proteínas centrais no sistema de homeostasia proteica da célula. Pelo fato delas estarem envolvidas em uma grande variedade de processos relacionados ao enovelamento correto das proteínas, elas estão envolvidas em processos como envelhecimento, doenças degenerativas, como Alzheimer, e alguns tipos de câncer. Uma das etapas essenciais no seu ciclo funcional é a troca de ADP por ATP, um processo que é acelerado pelos fatores de troca de nucleotídeos (NEFs) que, em bactérias e mitocôndrias, correspondem à proteína GrpE. Por razões ainda não bem compreendidas, duas isoformas estão presentes nas mitocôndrias de humanos, a GRPEL1 e a GRPEL2. Pouco se sabe da dinâmica da interação destas com a Hsp70 mitocondrial de humanos (mortalina) porque havia uma dificuldade em se obter esta proteína na sua forma solúvel e funcional (atualmente superada). Dessa forma, o presente trabalho de pesquisa busca caracterizar os aspectos bioquímicos e biofísicos dessas proteínas junto à mortalina, visando compreender a dinâmica da interação entre elas, contribuir para a elucidação da rede de interações das Hsp70 e compreender o porquê de 2 isoformas estarem presentes em mamíferos. Para isto, ensaios in vitro das proteínas mortalina, GRPEL1 e GRPEL2 recombinantes foram realizados. Elas foram expressas e purificadas por cromatografia de afinidade ao Ni2+ e gel filtração. As GrpEs tiveram seus graus de pureza e enovelamento correto avaliadas por SDS-PAGE e dicroísmo circular. Suas estruturas terciárias e quaternárias foram avaliadas através da cromatografia de exclusão molecular analítica e do crosslinking químico. Com as proteínas tendo sido purificadas, ensaios de interação molecular foram realizados através do pulldown, do ITC e, adicionalmente, foram feitos ensaios de agregação para investigar um possível papel das GrpEs no processo de agregação térmica da mortalina. Todas as proteínas puderam ser obtidas solúveis e com alto grau de pureza. Os ensaios de pulldown validaram a interação entre a mortalina e as GrpEs, mas essas interações não foram detectadas no ITC. Por fim, não houveram evidências de que as GrpEs atuem no sentido de prevenir a agregação térmica da mortalina. / Hsp70 are proteins that play a central role in cellular protein homeostasis. Because they are involved in a variety of processes related to protein folding, they are also involved in processes such as aging, degenerative diseases like Alzheimer and certain types of cancer. One of the essential steps in the Hsp70 functional cycle is the exchange of ADP for ATP, a process accelerated by the nucleotide exchange factors (NEF´s) which, in bacteria and mitochondria, corresponds to GrpE protein. For reasons not well understood yet, two isoforms are present on human mitochondria, GRPEL1 and GRPEL2. Little is known about the dynamics of their interaction with human mitochondrial Hsp70 (mortalin) because it was difficult to produce this protein in its soluble and functional form (now overcome by co-expression strategies with one co-chaperone). That being said, the current research work seeks to characterize the biochemical and biophysical aspects of those proteins together with mortalin in order to comprehend the dynamics of their interaction, to contribute on the elucidation of the Hsp70 interaction network and to comprehend why two isoforms are present. For this, in vitro assays of the recombinant proteins mortalin, GRPEL1 and GRPEL2 were carried out. They were expressed and purified by Ni2+ affinity chromatography and gel filtration. Both GrpEs had their degree of purity and correct folding assessed by SDS-PAGE and circular dichroism. Their tertiary and quaternary structures were evaluated by analytical size exclusion chromatography and chemical crosslinking. Having the proteins being purified, molecular interactions assays were done with pulldown, ITC and, additionally, aggregation assays were carried out to investigate a possible role played by GrpEs in the thermal aggregation process of mortalin. All the proteins could be obtained soluble and with a high degree of purity. Pull-down assays validated the interaction between mortalin and GrpEs, but this interaction could not be detected by ITC. Lastly, there was no evidence that GrpEs acted out preventing the thermal aggregation process of mortalin.
2

Functional Effects of ARV-1502 Analogs Against Bacterial Hsp70 and Implications for Antimicrobial Activity

Brakel, Alexandra, Kolano, Lisa, Kraus, Carl N., Otvos Jr, Laszlo, Hoffmann, Ralf 03 April 2023 (has links)
The antimicrobial peptide (AMP) ARV-1502 was designed based on naturally occurring short proline-rich AMPs, including pyrrhocoricin and drosocin. Identification of chaperone DnaK as a therapeutic target in Escherichia coli triggered intense research on the ligand- DnaK-interactions using fluorescence polarization and X-ray crystallography to reveal the binding motif and characterize the influence of the chaperone on protein refolding activity, especially in stress situations. In continuation of this research, 182 analogs of ARV-1502 were designed by substituting residues involved in antimicrobial activity against Gramnegative pathogens. The peptides synthesized on solid-phase were examined for their binding to E. coli and S. aureus DnaK providing 15 analogs with improved binding characteristics for at least one DnaK. These 15 analogs were distinguished from the original sequence by their increased hydrophobicity parameters. Additionally, the influence of the entire DnaK chaperone system, including co-chaperones DnaJ and GrpE on refolding and ATPase activity, was investigated. The increasingly hydrophobic peptides showed a stronger inhibitory effect on the refolding activity of E. coli chaperones, reducing protein refolding by up to 64%. However, these more hydrophobic peptides had only a minor effect on the ATPase activity. The most dramatic changes on the ATPase activity involved peptides with aspartate substitutions. Interestingly, these peptides resulted in a 59% reduction of the ATPase activity in the E. coli chaperone system whereas they stimulated the ATPase activity in the S. aureus system up to 220%. Of particular note is the improvement of the antimicrobial activity against S. aureus from originally >128 μg/mL to as low as 16 μg/mL. Only a single analog exhibited improved activity over the original value of 8 μg/mL against E. coli. Overall, the various moderate-throughput screenings established here allowed identifying (un)favored substitutions on 1) DnaK binding, 2) the ATPase activity of DnaK, 3) the refolding activity of DnaK alone or together with co-chaperones, and 4) the antimicrobial activity against both E. coli and S. aureus.

Page generated in 0.0243 seconds