• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O grupo de homotopia de tranças puras no disco é bi-ordenável / The homotopy group of braids over a disc is bi-orderable

Santos, Mirianne Andressa Silva 26 November 2018 (has links)
Em Artin (1925), Artin introduziu o estudo do grupo de tranças, o qual está intimamente relacionado ao estudo de nós e enlaçamentos. Em seu outro artigo Theory of Braids Artin (1947), ele questionou se as noções de isotopia e homotopia de tranças são as mesmas ou diferentes. Tal questão foi respondida muito mais tarde em Goldsmith (1974), onde a autora apresenta um exemplo de trança que é homotópica à trança trivial mas não é equivalente à trança trivial, caracterizando, além disso, o grupo de classes de homotopia de tranças puras no disco como um certo quociente do grupo de tranças puras original. Uma área de pesquisa mais recente nesta teoria é o estudo da ordenação destes grupos de tranças. Em Habegger e Lin (1990) os autores mostram que o grupo de classes de homotopia de tranças puras no disco é nilpotente e livre de torção. Resulta que ele é bi-ordenado. Em Yurasovskaya (2008) a autora fornece uma ordem explícita e calculável para este grupo. Neste trabalho discutiremos e apresentaremos os principais resultados neste contexto. / In Artin (1925), Artin introduced the study of braid groups, which is closely related to the study of knots and links. In his other paper Theory of Braids Artin (1947), he asked if the notions of isotopy and homotopy of braids are different or the same. Such question was answered much later in Goldsmith (1974), where the author presents an example of braid that is homotopic to the trivial braid, but it is not equivalent to the trivial braid, characterizing, beyond that, the group of homotopy classes of braids as an certain quotient of the original braid group. One more recent research area on this theory is the study of ordenation of braid groups. In Habegger e Lin (1990) the authors show that the homotopy group classes of pure braids is nilpotent and torsion free. It follows that it is bi-orderable. In Yurasovskaya (2008) the author provides one explicit and evaluable order for this group. In this work, we will discuss and present the main results involved on this context.
2

Pontos fixos e os contra-exemplos de Jiang

Souza, Taciana Oliveira 27 February 2009 (has links)
Made available in DSpace on 2016-06-02T20:28:24Z (GMT). No. of bitstreams: 1 2361.pdf: 1168766 bytes, checksum: 505e6f4b858e087853d7d7b24eee313e (MD5) Previous issue date: 2009-02-27 / Financiadora de Estudos e Projetos / The aim of this work is construct the example, presented by Boju Jiang, of a self - map on a manifold with non - realizable Nielsen number. Firstly we will need to present the fixed point theory and some results about covering spaces, we do that in chapter 1. The chapter 2 is dedicated to obtain one presentation of the braid group of the Pants, that is the manifold used in Jiang´s example. This presentation is a very important tool and it will be used in the main results of this work. In the chapter 3 we construct the self - map. The aim of chapter 4 is to proof the following theorem: Let M be a compact, connected surface with negative Euler caracteristic. Then there exist a self - map on M such that all maps in its homotopy class have at least one fixed point, but its Nielsen number is zero . This result shows that even for the manifold without bondary it is possible to find self - maps with non - realizable Nielsen number. In chapter 3 e 4 we use Braid Group to construct such counter - examples, in the chapter 5 (the last one) we related some equation in braid group with the number of fixed points of a self - map on a compact connected surface. / O objetivo desse trabalho é construir detalhadamente o exemplo, apresentado por Boju Jiang, de uma auto-aplicação definida em uma variedade, com número de Nielsen não realizavel. Para tanto, inicialmente precisamos abordar a Teoria de pontos fixos e alguns resultados sobre espaços de recobrimento, isso é feito no capítulo 1. O capítulo 2 é dedicado a obtenção de uma presentação para o Grupo de Tranças do disco com dois furos, que é a variedade no qual está definido o exemplo apresentado por Jiang. O Grupo de Tranças do disco com dois furos é uma importante ferramenta e será utilizado nos principais resultados desse trabalho. No capítulo 3 construímos a auto-aplicação. O objetivo do capítulo 4 ´e demonstrar o seguinte Teorema : Seja M uma superfície compacta e conexa com característica de Euler negativa. Então existe uma auto - aplicação definida em M tal que todas as aplicações na sua classe de homotopia têm no mínimo um ponto fixo, entretanto seu número de Nielsen é zero . Esse resultado nos garante que mesmo no caso de variedades sem bordo é possível encontrar exemplos de auto-aplicações com número de Nielsen não realizável. Nos capítulos 3 e 4, a Teoria de Tranças é usada na construção de contra - exemplos, mas no quinto, e último, capítulo relacionamos equações com tranças e o número de pontos fixos de uma auto-aplicação definida em uma superfície compacta e conexa.
3

Uma ordenação para o grupo de tranças puras / An ordering for groups of pure braids

Melocro, Letícia 25 October 2016 (has links)
Neste trabalho apresentamos uma descrição geométrica do grupo de tranças no disco Bpnq e sua apresentação em termos de geradores e relatores no famoso teorema da apresentação de Artin. Mostraremos também que o grupo de tranças puras PBpnq, grupo que possui a permutação trivial das cordas, é bi-ordenável, ou seja, exibiremos uma ordenação para PBpnq que será invariante pela multiplicação em ambos os lados. Esse processo é dado a partir da combinação da técnica de pentear Artin e a expansão Magnus para grupos livres. / In this work, we present a geometric description of the braids groups of the disk Bpnq and its presentation in terms of generators and relations in the famous theorem of Artin\'s presentation. We also show that groups of pure braids, denoted by PBpnq, groups that have the trivial permutation of the strings, are bi-orderable, that is, we will present the explicit construction of a strict total ordering of pure braids PBpnq which is invariant under multiplying on both sides. This process is given from the combination of the techniques of combing Artin and Magnus expansion to free groups.
4

Uma ordenação para o grupo de tranças puras / An ordering for groups of pure braids

Letícia Melocro 25 October 2016 (has links)
Neste trabalho apresentamos uma descrição geométrica do grupo de tranças no disco Bpnq e sua apresentação em termos de geradores e relatores no famoso teorema da apresentação de Artin. Mostraremos também que o grupo de tranças puras PBpnq, grupo que possui a permutação trivial das cordas, é bi-ordenável, ou seja, exibiremos uma ordenação para PBpnq que será invariante pela multiplicação em ambos os lados. Esse processo é dado a partir da combinação da técnica de pentear Artin e a expansão Magnus para grupos livres. / In this work, we present a geometric description of the braids groups of the disk Bpnq and its presentation in terms of generators and relations in the famous theorem of Artin\'s presentation. We also show that groups of pure braids, denoted by PBpnq, groups that have the trivial permutation of the strings, are bi-orderable, that is, we will present the explicit construction of a strict total ordering of pure braids PBpnq which is invariant under multiplying on both sides. This process is given from the combination of the techniques of combing Artin and Magnus expansion to free groups.

Page generated in 0.0667 seconds