• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Torção de Reidemeister das formas espaciais esféricas / Reidemeister torsion of spherical space forms

Melo, Thiago de 17 March 2009 (has links)
Neste trabalho, estudamos a ação dos grupos dos quatérnios generalizados \'Q IND.4t\', nas esferas, com o objetivo de calcularmos a torção de Reidemeister dos espaços quocientes, chamados de Formas Espaciais Esféricas Quaterniônicas. Calculamos a torção de Ray-Singer das esferas, dos espaços lenticulares e do cone sobre as esferas, este último fornecendo o caso particular do disco, usando a base para a homologia definida em [27]. Para as variedades fechadas, obtivemos a torção analítica por meio do Teorema de Cheeger-Müller [7, 22], e para o disco, por meio de uma fórmula provada por Brüning e Ma em [5] / In this work, we study the action of the generalized quaternionic groups \'Q IND.4t\' on the spheres to compute the Reidemeister torsion of the quotient spaces, which are called Quaternionic Spherical Space Forms. Using the base of the homology defined by Ray and Singer in [27] we compute also the Ray-Singer torsion of the spheres, lens spaces and the cone over the spheres. This last one provides the disc as a particular case. For the closed manifolds we obtain the analytic torsion using the Cheeger-Müller Theorem [7, 22] and for the disc using a formula proved by Brüning and Ma in [5]
2

Torção de Reidemeister das formas espaciais esféricas / Reidemeister torsion of spherical space forms

Thiago de Melo 17 March 2009 (has links)
Neste trabalho, estudamos a ação dos grupos dos quatérnios generalizados \'Q IND.4t\', nas esferas, com o objetivo de calcularmos a torção de Reidemeister dos espaços quocientes, chamados de Formas Espaciais Esféricas Quaterniônicas. Calculamos a torção de Ray-Singer das esferas, dos espaços lenticulares e do cone sobre as esferas, este último fornecendo o caso particular do disco, usando a base para a homologia definida em [27]. Para as variedades fechadas, obtivemos a torção analítica por meio do Teorema de Cheeger-Müller [7, 22], e para o disco, por meio de uma fórmula provada por Brüning e Ma em [5] / In this work, we study the action of the generalized quaternionic groups \'Q IND.4t\' on the spheres to compute the Reidemeister torsion of the quotient spaces, which are called Quaternionic Spherical Space Forms. Using the base of the homology defined by Ray and Singer in [27] we compute also the Ray-Singer torsion of the spheres, lens spaces and the cone over the spheres. This last one provides the disc as a particular case. For the closed manifolds we obtain the analytic torsion using the Cheeger-Müller Theorem [7, 22] and for the disc using a formula proved by Brüning and Ma in [5]

Page generated in 0.0762 seconds