• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 39
  • 14
  • 13
  • 10
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 198
  • 101
  • 45
  • 37
  • 29
  • 28
  • 25
  • 22
  • 18
  • 17
  • 17
  • 16
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The role for the p85 subunit of PI3kinase in the regulation of rab proteins

King, Jennifer C 26 January 2009
Upon activation by the platelet-derived growth factor receptor (PDGFR), phosphatidylinositol 3'-kinase (PI3K) converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate to activate the PI3K/Akt cellular survival signalling pathway within cells. The p85 subunit of PI3K has also been shown to have GTPase activating protein (GAP) activity towards Rab proteins involved in receptor endocytosis and trafficking, specifically Rab5 and Rab4. Rab5 is responsible for regulating the fusion of vesicles containing activated receptors to traffic them to intracellular early/sorting endosomes. Rab4 is responsible for regulating the exit of receptors to a recycling pathway back to the plasma membrane. The p85 RabGAP activity is responsible for deactivating Rab5 and Rab4 function by accelerating their GTPase activity, resulting in the inactive conformation of Rab5 and Rab4, and decreased vesicle fusion events during receptor trafficking. The work in this thesis was performed to understand how p85 interacts with, and regulates, Rab5 and Rab4. Glutathione S-transferase pulldown experiments showed the p85 protein was able to interact with Rab5 through its BH domain and another unidentified domain. Cells expressing a p85-R274A mutant defective for RabGAP activity displayed increased PDGFR activation and decreased degradation. To understand the mechanism of decreased PDGFR degradation, PDGFR immunoprecipitation experiments showed the PDGFR was ubiquitinated, a signal needed for multi-vesicular body sorting. Biotinylation experiments showed the PDGFR was being more rapidly endocytosed and then sequestered within the cell. Immunofluorescence experiments showed cells expressing the p85-R274A mutant clearly altered PDGFR trafficking during receptor endocytosis. These results suggest the PDGFR was not spending longer periods of time on the cell surface to continue signalling and was not lacking the modification needed to be sorted to a degradative pathway. The defective trafficking observed in p85-R274A expressing cells, over time, may block PDGFR trafficking, which prevents normal PDGFR dephosphorylation and degradation, and could be attributed to a lack of sufficient cytosolic Rab5-GDP and Rab4-GDP required to associate with new membranes and facilitate additional vesicle fusion events. The lack of lysosomal targeting allows the receptor to be sequestered in cells, but still have the ability to signal as the receptor would not be targeted to multi-vesicular bodies where signalling is abolished.
62

Regulatory mechanisms of the exchange factor RasGRP1

Tazmini, Ghazaleh 11 1900 (has links)
RasGRP1 is an intracellular signaling protein expressed in lymphocytes that is responsible for activating Ras GTPases. Positive regulation of RasGRP 1 requires translocation to cellular membranes where lipid-anchored Ras can be accessed. Plasma membrane localization of RasGRP 1 in response to antigen receptors requires both the Cl domain and the plasma-membrane targeting (PT) domain. The Cl domain binds to diacylglycerol (DAG) at membranes. The PT domain binds its putative ligand at the plasma membrane and is negatively regulated by an adjacent suppressor of PT (SuPT) domain. RasGRP1 also contains a pair of EF-hands, with Ca²⁺-binding capability, but with no known regulatory role. In DT4O cells, RasGRP1 translocates to the plasma membrane and activates the Ras ERK pathway in response to B cell receptor (BCR) signaling. By introducing point mutations in the Ca²⁺-binding loops of each of the EF-hands, I found that a potential Ca²⁺- interaction loop in the first EF-hand is required for RasGRP1 translocation and the consequential activation of the Ras-ERK pathway in response to BCR signaling. However, RasGRP1 translocation is not regulated by BCR-generated Ca²⁺ flux. EF-hands were not required for Cl domain-mediated membrane localization, but were needed for PT-mediated plasma membrane targeting. EF-hands enhanced PT-domain mediated plasma membrane localization by repressing the SuPT domain. The REM and GEF domains, which co ordinately bind to and catalyze guanine nucleotide exchange on Ras GTPases, needed to be present and Ras-bound for this EF-hand mechanism to be effective. When not bound to Ras, the REM-GEF domain complex suppressed both plasma membrane and endomembrane targeting of RasGRP 1 by an EF-hand independent mechanism. Finally, membrane localization and activation of a naturally occurring splice variant of RasGRP 1, found overexpressed in systemic lupus erythematosus (SEE) patients, was examined. This splice variant lacks exon 11, which encodes the segment of RasGRP1 between the GEF domain and the first EF-hand. Removal of exon 11 resulted in a defect in plasma membrane localization that was partially overridden by deletion of SuPT, while membrane localization control via the REM-GEF complex was not affected. Therefore, exon 11 deletion via alternative splicing appears to functionally disable the first EF-hand of RasGRP1.
63

The role for the p85 subunit of PI3kinase in the regulation of rab proteins

King, Jennifer C 26 January 2009 (has links)
Upon activation by the platelet-derived growth factor receptor (PDGFR), phosphatidylinositol 3'-kinase (PI3K) converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate to activate the PI3K/Akt cellular survival signalling pathway within cells. The p85 subunit of PI3K has also been shown to have GTPase activating protein (GAP) activity towards Rab proteins involved in receptor endocytosis and trafficking, specifically Rab5 and Rab4. Rab5 is responsible for regulating the fusion of vesicles containing activated receptors to traffic them to intracellular early/sorting endosomes. Rab4 is responsible for regulating the exit of receptors to a recycling pathway back to the plasma membrane. The p85 RabGAP activity is responsible for deactivating Rab5 and Rab4 function by accelerating their GTPase activity, resulting in the inactive conformation of Rab5 and Rab4, and decreased vesicle fusion events during receptor trafficking. The work in this thesis was performed to understand how p85 interacts with, and regulates, Rab5 and Rab4. Glutathione S-transferase pulldown experiments showed the p85 protein was able to interact with Rab5 through its BH domain and another unidentified domain. Cells expressing a p85-R274A mutant defective for RabGAP activity displayed increased PDGFR activation and decreased degradation. To understand the mechanism of decreased PDGFR degradation, PDGFR immunoprecipitation experiments showed the PDGFR was ubiquitinated, a signal needed for multi-vesicular body sorting. Biotinylation experiments showed the PDGFR was being more rapidly endocytosed and then sequestered within the cell. Immunofluorescence experiments showed cells expressing the p85-R274A mutant clearly altered PDGFR trafficking during receptor endocytosis. These results suggest the PDGFR was not spending longer periods of time on the cell surface to continue signalling and was not lacking the modification needed to be sorted to a degradative pathway. The defective trafficking observed in p85-R274A expressing cells, over time, may block PDGFR trafficking, which prevents normal PDGFR dephosphorylation and degradation, and could be attributed to a lack of sufficient cytosolic Rab5-GDP and Rab4-GDP required to associate with new membranes and facilitate additional vesicle fusion events. The lack of lysosomal targeting allows the receptor to be sequestered in cells, but still have the ability to signal as the receptor would not be targeted to multi-vesicular bodies where signalling is abolished.
64

Structural and functional studies on GTPases involved in eukaryal translation initiation

Kuhle, Bernhard 16 October 2014 (has links)
No description available.
65

Study of the roles of RhoE in human hepatocellular carcinoma

Ma, Wei, 馬威 January 2013 (has links)
Hepatocellular carcinoma (HCC) is the seventh most prevalent cancer and the third leading cause of cancer-related mortality globally. Metastasis is a major cause of mortality. HCC is also highly chemoresistant which limits treatment options to patients. Understanding the molecular mechanisms involved in these two events is of crucial significance. Deregulation of Rho/ROCK signaling is common in HCC and regulates different cellular events including cell invasion and survival. In this study, we aimed to further investigate how members of the Rho/ROCK pathway regulate HCC cell invasion and chemoresistance. By screening 71 pairs of human HCC samples using real-time qPCR, we identified that RhoE was frequently downregulated in human HCC. RhoE serves as an antagonist of the Rho/ROCK pathway. Clinicopathologically, downregulation of RhoE associated with shorter patient disease-free survival. In virto assays showed that stable knockdown of RhoE enhanced both HCC cell migration and invasion. In vivo mouse models also demonstrated that knockdown of RhoE promoted HCC invasiveness and intra-hepatic metastasis. Mechanically, knockdown of RhoE increased ROCK activity By screening 71 pairs of human HCC samples using real-time qPCR, we identified that RhoE was frequently downregulated in human HCC. RhoE serves as an antagonist of the Rho/ROCK pathway. Clinicopathologically, downregulation of RhoE associated with shorter patient disease-free survival. In virto assays showed that stable knockdown of RhoE enhanced both HCC cell migration and invasion. In vivo mouse models also demonstrated that knockdown of RhoE promoted HCC invasiveness and intra-hepatic metastasis. Mechanically, knockdown of RhoE increased ROCK activity and inhibition of ROCK reversed the effect of RhoE knockdown on cell migration. RhoE overexpression induced disassembly of stress fibers while knockdown of RhoE enhanced formation of plasma membrane blebs. These findings suggested that RhoE acts as a metastatic suppressor in HCC via inhibiting Rho/ROCK signaling. Downregulation of RhoE can increase ROCK activity which is reported to regulate cell survival. Therefore we investigated if the frequent downregulation of RhoE contributes to the high chemoresistance in HCC cells. Stable knockdown of RhoE suppressed cell death/apoptosis induced by chemotherapeutic agents such as cisplatin and doxorubicin. This effect could be reversed by addition of ROCK inhibitor. In vivo mouse model also confirmed that RhoE knockdown augmented HCC chemoresistance. We also observed that combined treatment of cisplatin and ROCK inhibitor profoundly inhibited tumor growth in nude mice. This part of our findings indicated that RhoE/ROCK played an important role in regulating chemoresistance in HCC. We further identified two downstream molecular pathways which were involved in Rho/ROCK-induced chemoresistance. We found that STAT3 and JAK2 were activated by RhoE knockdown but inhibited by addition of ROCK inhibitor. Upon ROCK inhibition, expression of IL-6 and IL-6 receptor were suppressed and the transcription activating activity of STAT3 was also repressed. Finally, ROCK inhibition attenuated Erk1/2 activation. Literature searching suggested nuclear PTEN as a potential candidate for inactivating Erk1/2. We demonstrated that inhibition of ROCK increased the population of nuclear PTEN while overexpressing ROCK2 decreased it. Overexpression of nuclear PTEN alone could already reduce Erk activation in HCC cells. Our findings indicated that RhoE/ROCK may exert their effects on chemoresistance in HCC via regulating the IL-6/JAK2/STAT3 and PTEN/Erk pathways. In conclusion, our study demonstrated the important role of RhoE in HCC. First, aberrant underexpression of RhoE promoted HCC invasion and intra-hepatic metastasis through upregulating the Rho/ROCK signaling. Second, downregulation of RhoE increased activity of the pro-survival IL-6/JAK2/STAT3 and Erk signalings to enhance chemoresistance in HCC cells. Our findings also suggested the Rho/ROCK signaling to be potential therapeutic target in anti-metastatic and chemo-sensitizing therapy. / published_or_final_version / Pathology / Doctoral / Doctor of Philosophy
66

Regulatory mechanisms of the exchange factor RasGRP1

Tazmini, Ghazaleh 11 1900 (has links)
RasGRP1 is an intracellular signaling protein expressed in lymphocytes that is responsible for activating Ras GTPases. Positive regulation of RasGRP 1 requires translocation to cellular membranes where lipid-anchored Ras can be accessed. Plasma membrane localization of RasGRP 1 in response to antigen receptors requires both the Cl domain and the plasma-membrane targeting (PT) domain. The Cl domain binds to diacylglycerol (DAG) at membranes. The PT domain binds its putative ligand at the plasma membrane and is negatively regulated by an adjacent suppressor of PT (SuPT) domain. RasGRP1 also contains a pair of EF-hands, with Ca²⁺-binding capability, but with no known regulatory role. In DT4O cells, RasGRP1 translocates to the plasma membrane and activates the Ras ERK pathway in response to B cell receptor (BCR) signaling. By introducing point mutations in the Ca²⁺-binding loops of each of the EF-hands, I found that a potential Ca²⁺- interaction loop in the first EF-hand is required for RasGRP1 translocation and the consequential activation of the Ras-ERK pathway in response to BCR signaling. However, RasGRP1 translocation is not regulated by BCR-generated Ca²⁺ flux. EF-hands were not required for Cl domain-mediated membrane localization, but were needed for PT-mediated plasma membrane targeting. EF-hands enhanced PT-domain mediated plasma membrane localization by repressing the SuPT domain. The REM and GEF domains, which co ordinately bind to and catalyze guanine nucleotide exchange on Ras GTPases, needed to be present and Ras-bound for this EF-hand mechanism to be effective. When not bound to Ras, the REM-GEF domain complex suppressed both plasma membrane and endomembrane targeting of RasGRP 1 by an EF-hand independent mechanism. Finally, membrane localization and activation of a naturally occurring splice variant of RasGRP 1, found overexpressed in systemic lupus erythematosus (SEE) patients, was examined. This splice variant lacks exon 11, which encodes the segment of RasGRP1 between the GEF domain and the first EF-hand. Removal of exon 11 resulted in a defect in plasma membrane localization that was partially overridden by deletion of SuPT, while membrane localization control via the REM-GEF complex was not affected. Therefore, exon 11 deletion via alternative splicing appears to functionally disable the first EF-hand of RasGRP1.
67

Novel mechanisms of Stat3 activation

Arulanandam, Rozanne 23 February 2010 (has links)
Stat3 (signal transducer and activator of transcription-3) is activated by a number of receptor and non-receptor tyrosine kinases, while a constitutively active form of Stat3 alone is sufficient to induce neoplastic transformation. Results presented in this thesis reveal that Stat3 can also be activated through homophilic interactions by the epithelial (E)-cadherin and cadherin-11, two members of the classical type I and II cadherin family of surface receptors, responsible for the formation of cell to cell junctions. Indeed, by plating cells onto surfaces coated with fragments encompassing the two outermost domains of these cadherins, we definitively demonstrate that cadherin engagement can activate Stat3, even in the absence of direct cell to cell contact. At the same time, levels of the extracellular signal regulated kinase (Erk)1/2, which is often coordinately activated by growth factor receptors and oncogenes, remain unchanged upon cadherin ligation. Most importantly, we report, for the first time, an unexpected surge in total Rac1 and Cdc42 protein levels, triggered by cadherin engagement, and an increase in Rac1 and Cdc42 activity, which is responsible for the Stat3 stimulation observed. Inhibition of cadherin interactions reduced Rac/Cdc42 and Stat3 levels and induced apoptosis, pointing to a significant role of this pathway in cell survival signalling, a finding which could also have important therapeutic implications. To better understand the role of Rac/Cdc42 in the cadherin-mediated Stat3 activation, we compared Stat3 activity in mouse HC11 cells before and after expression of the mutationally activated, RacV12. We demonstrate a dramatic increase in protein levels and activity of both the endogenous Rac and RacV12 with cell density, which was due to inhibition of proteasomal degradation. Moreover, we clearly show that RacV12 expression can activate Stat3 through an increase in expression of members of the IL6 family of cytokines, known potent Stat3 activators. In fact, knockdown experiments indicate that gp130 receptor function, and Stat3 activation, are essential for the migration and proliferation of RacV12-expressing cells, thereby demonstrating that the gp130/Stat3 axis represents an essential target of activated Rac in the regulation of both of these fundamental cellular functions. / Thesis (Ph.D, Pathology & Molecular Medicine) -- Queen's University, 2010-02-18 10:38:29.549
68

The interplay between α-synuclein and Rab GTPases: Insights into the molecular basis of synucleinopathies

Eisbach, Sibylle Elisabeth 04 March 2014 (has links)
Mit fortschreitendem Durchschnittsalter der Bevölkerung gewinnen altersbedingte Krankheiten immer mehr an Signifikanz. Demenz und Einschränkungen der Beweglichkeit wirken sich auf Individuen sowie auf Familien aus, da die progressive Abnahme kognitiver und physischer Fähigkeiten ihren Tribut von der Lebensqualität Betroffener sowie den Pflegenden fordert. Morbus Parkinson (PD) ist eine neurodegenerative Erkrankung, welche sich durch Symptome des Bewegungsapparates äußert, bedingt durch degenerative Prozesse im Mittelhirn, und welche mit Veränderungen des Gemütszustandes, Verhaltens sowie Depression und Demenz fortschreiten können. PD betrifft in der Regel ältere Personen, jedoch wurden Gene verschiedener zellulärer Funktionen identifiziert, deren Mutation zu einer frühen oder gar juvenilen Ausprägung der Krankheit führen kann. Ein Hauptakteur in PD ist α-Synuclein (ASYN), ein kleines Protein welches in PD-typischen Proteinablagerungen gefunden wurde. Die zelluläre Funktion von ASYN ist immernoch unbekannt, Mutation oder Überexpression jedoch können zu einem hypermorphen Phänotyp führen und die Verbindung zu PD ist daher unumstritten. Studien haben gezeigt, dass ASYN mit Proteintransportwegen und der Aufstellung der Transportmaschinerie interferiert. Genetische Rasterstudien identifizierten Modulatoren von ASYN-Toxizität in Genclustern des Vesikeltransports. Ebenso konnten Studien in Hefe zeigen, dass Überexpression von ASYN diverse Transportwege stört, besonders zu beachten ist hier der ER-zu-Golgi Transportweg, welcher kritisch für Posttranslationale Modifikationen verschiedener Proteine ist. Des Weiteren greift ASYN-Pathologie störend in die Homöostase von Rab GTPasen ein, eine Proteinfamilie involviert in Vesikeltransport, manche deren Mitglieder ASYN-Toxizität reduzieren können. In dieser Studie zeigen wir in einer Rasteruntersuchung mit Rab GTPasen in einem Säugerzellmodell von ASYN-Proteinanreichungen, dass die ASYN-Pathologe zu einer weitreichenden Störung von Rab GTPase assoziierten Transportwegen führt. Wir identifizieren zwei unterschiedliche endosomale Stoffwechselwege welche beim Auftreten von ASYN-Proteinablagerungen fehlreguliert werden: der endosomale-lysosomale-Proteintransportweg welcher das frühe Endosom beinhaltet, sowie den trans-Golgi Netzwerk (TGN) Transportweg. Die kleinen Rab GTPasen Rab5A, Rab7 und Rab8A haben fundamentale Auswirkungen auf die Formation von ASYN-Proteinansammlungen, Sekretion und Toxizität. Wir zeigen dass Rab8A in der Lage ist ASYN-Proteinansammlungen zu modulieren und agiert protektiv in Bezug auf zelluläre Toxizitätslevel in unserem Modell. Rab5A, ein Protein des frühen Endosoms, fehllokalisiert mit Formation der Ablagerungen, während das lysosomale Rab7 die Anzahl der Ablagerungen erhöht, aber nicht ihnen kolokalisiert. Des Weiteren benutzen wir Größenexklusionschromatographie (SEC) und Enzyme Linked Immunosorbent Assay (ELISA) um zu zeigen, dass Rab5A und Rab7 in Abhängigkeit ihres Aktivitätszustandes die Partikelgröße von ASYN ändert und die Sekretion moduliert. Die abschließende Bewertung eines Tiermodells welches humanes ASYN pan-neuronal überexpremiert zeigte, dass lysosomales Rab7 und die Protease Cathepsin D (CatD) in Hirnregionen verantwortlich für Bewegung, Motivation und Gedächtnis herausreguliert sind. Unsere Arbeit sowohl in Säugerzellkultur sowie in transgenen Tieren deutet darauf hin, dass die ASYN-Pathologie Auswirkungen auf das endosomale Transportsystem hat, aber zeigt auch die Fähigkeit von Proteinen, welche mit diesem Transportsystem assoziiert sind, die Toxizität von ASYN zu modulieren. Daher schließen wir, dass Anomalien in der Transportmaschinerie von Endosomen, welche durch Fehlregulation ASYN verursacht wurden, zur Entstehung der PD Pathologie beitragen.
69

Deletion of the phosphoinositide-3-kinase RhoGAP domain to assess inhibition of Staphylococcus aureus infection / RhoGAP deletion

Haaning, Kelsey L. January 2008 (has links)
It is important to understand the mechanism of endocytic invasion into the host cell by Staphylococcus aureus. Activation of phosphoinositide-3-kinase (PI3K) is essential to S. aureus invasion. In a normal cell, the p85 subunit of PI3K is bound at the Rho GTPase activating protein (RhoGAP) domain to small guanosine triphosphate binding proteins (GTPases), which are attached to the cell membrane by a prenyl group. This association anchors PI3K near the cellular membrane. PI3K must be anchored near the membrane in order to phosphorylate its substrate. The hypothesis for this project is that deletion of the binding domain between PI3K and small GTPases will block endocytic bacterial invasion by sequestering PI3K in the cytosol. To investigate this hypothesis, the RhoGAP binding domain of PI3K p85 was mutated using site-directed mutagenesis and S. aureus invasion was reduced by up to 86% (p<0.05), which shows that this domain is important to bacterial invasion. / Department of Biology
70

CID 2950007 as an inhibitor of Staphylococcus aureus infections

England, Benjamin J. 22 May 2012 (has links)
Access to abstract restricted until May 2015 / Access to thesis restricted until May 2015 / Department of Biology

Page generated in 0.0804 seconds