• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La synthèse de la coiffe en tant que nouvelle cible thérapeutique potentielle

Tremblay-Létourneau, Maude January 2012 (has links)
Afin de pallier l'apparition de souches pathogènes résistantes, de nouveaux traitements aux mécanismes d'action inédits doivent être découverts. Une de ces cibles d'intérêt grandissant est la synthèse de la structure coiffe chez les ARN messagers (ARNm) eucaryotes. Cette structure est l'une des modifications co-transcriptionnelles essentielles pour augmenter la demi-vie des ARNm, promouvoir leur export du noyau vers le cytoplasme et augmenter l'efficacité de leur traduction en protéines. La synthèse de la structure coiffe (m [indice supérieur 7] GpppARN) résulte de trois activités enzymatiques séquentielles qui ajoutent la structure m[indice supérieur 7] Gppp. Initialement, une ARN triphosphatase (RTase) hydrolyse le phosphate gamma de l'ARN. Une ARN guanylyltransférase (GTase) transfert ensuite sur cet ARN un groupement GMP à partir d'un GTP. Finalement, une ARN guanine-N7 méthyltransférase (N7-MTase) vient méthyler cette guanine en position N7. L'activité enzymatique de la GTase est déterminante pour la synthèse de la structure coiffe, ce qui en fait une cible potentiellement puissante afin d'inhiber la synthèse de la structure coiffe. Certaines études ont identifié des analogues de substrat et de produit, la ribavirine et le foscarnet respectivement, comme inhibiteur de GTase. Ces produits agissent sur les différentes GTases puisqu'elles possèdent un site actif très conservés au niveau de la coordination du substrat. Pour augmenter la spécificité des inhibiteurs, il serait avantageux d'identifier des composés ciblant les régions non conservées. Dans la présente étude, la technique du criblage virtuel a permis d'analyser le potentiel d'interaction des molécules à 80 % similaires au substrat naturel avec plusieurs structures de GTases. Parmi les interactions prédites identifiées par le criblage virtuel, une de ces molécules suscitait un intérêt particulier, puisqu'il s'agissait d'un composé utilisé chez l'humain en tant qu'antiviral et immunosuppresseur, l'acide mycophénolique (MPA). L'hypothèse initiale était que ce composé pouvait potentiellement interférer dans l'activité enzymatique des GTases. Pour valider cette prédiction, des essais biochimiques ciblant la réaction complète et les étapes intermédiaires de la GTase de la levure Saccharomyces cerevisiae (S. cerevisiae ) ont été utilisées pour définir l'effet du MPA sur la cinétique de cette GTase. En effet, la réaction de GTase se déroule en deux temps : premièrement, une molécule de GTP est hydrolysée par l'enzyme pour former du GMP, lequel est lié de façon covalente à l'enzyme, et deuxièmement, cette molécule de GMP est transférée sur un ARN diphosphorylé. Ces essais ont confirmé l'interaction prédite par le criblage virtuel. En utilisant cette approche, nous démontrons que le MPA peut inhiber la réaction de GTase en prévenant le transfert catalytique du nucléotide GMP sur l'ARNm accepteur. En ce sens, le MPA représente un nouveau type d'inhibiteur d'ARN guanylyltransférase qui inhibe la deuxième étape de l'activité catalytique. Puisque les résultats laissaient présager une inhibition non compétitive, il fallait confirmer que le MPA n'était pas reconnu par l'enzyme comme substrat. Pour ce faire, la technique de l'électrophorèse par capillarité a montré que l'inhibiteur ne formait pas de lien covalent avec l'enzyme. De plus, nous démontrons qu'une culture de Saccharomyces cerevisiae qui croit en présence de MPA dénote une quantité moindre d'ARNm possédant une coiffe. Finalement, des essais biochimiques démontrent que le composé peut également inhiber des enzymes de la même famille que les GTases utilisant des substrats différents : les ligases à ADN. Le MPA inhibe la deuxième étape de la réaction enzymatique d'une ligase, soit le transfert du nucléotide sur l'oligonucléotide. Ce mémoire vise donc à présenter un aperçu du mécanisme d'inhibition de l'ARN guanylyltransférase par un composé allostérique. Nous montrons qu'il est possible de réduire la synthèse de la structure coiffe en affectant les changements conformationnels de cette enzyme.
2

Caractérisation des enzymes de formation de la coiffe du virus du Nil Occidental et du métapneumovirus humain / Characterization of capping enzyme of West Nile Virus and human metapneumovirus

Collet, Axelle 03 December 2015 (has links)
Ma thèse a porté sur l’étude des activités enzymatiques impliquées dans la formation de la coiffe de deux virus à ARN: le virus du Nil Occidental (WNV) et le métapneumovirus humain (hMPV). Ces virus codent pour des enzymes assurant l’ajout de la coiffe de type-1 (m7GpppN2’Om) à l’extrémité 5’ de leur ARNm.Le domaine N-terminal de la protéine NS5 (NS5MTase) du WNV porte les activités N7- et 2’O-méthyltransférases (N7- et 2’O-MTases) et il a été proposé que NS5MTase puisse également porter l’activité guanylyltransférase (GTase). J’ai identifié in vitro des résidus clés impliqués dans l’interaction entre NS5MTase et des ARN substrats de chaque activité MTase. Nos résultats démontrent que le site de fixation de la coiffe est nécessaire lors de la 2’O-méthylation et ne l’est pas pour la N7-méthylation. En parallèle, j’ai recherché des résidus catalytiques de la GTase par la méthode de génétique inverse. Des résultats préliminaires indiquent que la mutation K29A induit un défaut de réplication. Ce résidu pourrait donc être impliqué dans l’activité GTase de NS5MTase.Concernant hMPV, j’ai effectué une analyse fonctionnelle du domaine CR-VI+ de la protéine L. J’ai démontré que CR-VI+ possède les activités N7- et 2’O-MTases et j’ai identifié les résidus impliqués dans le recrutement de l’ARNm. L’ordre de méthylation est non canonique avec la 2’O-méthylation qui précède la N7-méthylation. Enfin, j’ai également démontré que CR-VI+ possède une activité d’hydrolyse du GTP.Ce travail démontre que ces MTases possèdent 2 voire 3 des activités enzymatiques nécessaires à la formation de la coiffe, et représentent donc une cible de choix pour le développement d’inhibiteurs. / My PhD project is focus on the study of the enzymatic activities involved in the RNA capping pathway of two RNA viruses: the West Nile Virus (WNV) and the human metapneumovirus (hMPV). These viruses encode for enzymes allowing the addition of a cap-1 structure (m7GpppN2’Om) to their mRNA 5’ ends. The NS5 N-terminal domain (NS5MTase) of WNV harbours the N7- and 2’O-methyltransferase activities (N7- and 2’O-MTase); and it has been proposed that NS5MTase also bears a guanylyltransferase activity (GTase). I have identified residues involved in the NS5MTase interaction sites with their RNAs substrate. My assays demonstrate the importance of the cap-binding site for the 2’O-methylation but not for the N7-methylation. In parallel, I have tried to identify putative catalytic residues of the GTase activity by reverse genetics. Preliminary results suggest that NS5MTase K29 could be a catalytic residue.Concerning hMPV, I performed a functional analysis of CR-VI+ domain of the protein L. I demonstrated that the CR-VI+ domain harbours the N7- and 2’O-MTase activities and identified the residues involved in the mRNA recruitment. I showed that the methylation order is not canonical with the 2’O-methylation preceding the N7-methylation. Finally, I showed that the domain harbours an additional GTP hydrolysis activity, representing the first step of RNA cap formation for Mononegavirales.This work demonstrates that this MTase domains harbour 2 or 3 of the enzymatic activities required for viral RNA cap synthesis and represent attractive targets for the development of antivirals.

Page generated in 0.0446 seconds