Spelling suggestions: "subject:"gulf off St. lawrence"" "subject:"gulf off St. awrence""
1 |
The Morpho-Ecological Character of Coastal Sand Dunes on the Northern Tombolo, Les Iles-De-La-Madeleine, QuebecGiles, Philip Thomas 04 1900 (has links)
This research paper was submitted to the Department of Geography in fulfillment of the requirements of Geography 4C6. / There are marked differences in the morphology and vegetation of the west (Dune du Nord) and east (Dune du Sud) coast dunes of Les Iles-de-la-Madeleine in the southern Gulf of St. Lawrence. The west coast dunes consist mainly of blown-out foredunes succeeded inland by large parabolic dunes. Vegetation is dominated by Ammophila breviligulata with <40% cover, except for the rich flora of cranberry bog communities that occur in deflation hollows at the base of the parabolic scarps. One section of Dune du Nord has more stable, heath-covered dunes that have been extensively modified by deflation, creating a complex topography. On the east coast, the stable dunes support species rich heath and grassland vegetation with higher cover (60-100%). The southern part is a wide complex of progradational ridges, now being overridden on the seaward side by a narrow blown-out strip dominated by A. brevliligulata. To the north, the topography is simple, with A. brevliligulata on the foredune that is quickly succeeded by grassland vegetation on a narrow dune flat. This contrast in morpho-ecological conditions between the two coasts is related to the differences in wave energy described by Owens (1977), wind regime, and existing topography. The present research paper provides a Canadian example of Hesp's (1988) model of the surfzone and wave energy interaction with dune morphology and ecology. / Thesis / Bachelor of Science (BSc)
|
2 |
The Barrier Islands of Kouchibouguac Bay, New BrunswickBryant, Edward Arnot 05 1900 (has links)
This study is concerned with a 29km long barrier island system along the New Brunswick coast of Kouchibouguac Bay. Over the past 150 years these islands have been retreating shorewards and have been affected by storm wave action. The changes in the island configuration, the characteristics of the island topography and the seasonal variations in the beach profile suggests that these islands are similar to better known ones along the United States coastline. The sediment characteristics of these islands reveal that there is an interplay of wind and wave processes on the sands, an interplay that is constantly mixing beach, dune and lagoon sands. The dominant southwest winds in summer cause most of the beach and dune sands to take on the characteristics of wind affected sands while the fall and spring storms impart characteristics of wave deposition to the beach sands at these times. The sediment characteristics revealed seasonal changes in the islands but simulation modelling of the energy distribution of waves in the bay after wave refraction accounts for most of the long term change in the island configuration. This modelling emphasizes field work which revealed that not all parts of the islands are affected by the same storm waves. Nort-northeast waves have a better chance of affecting the southern part of the bay while more easterly approaching waves will only influence the northern part. Over a period of time form 1894 to 1964, wave refraction modelling also shows that much of the change in the configuration of South Beach can be accounted for by wave refraction over a changing offshore bathymetry. Storm wave action thus accounts for most of the change in island configuration but the change around the inlets is most likely dependent upon the ability of these inlets to maintain stability at all times. Richibucto Inlet has achieved a stable equilibrium between the strength of the tidal currents passing through the inlet and the amount of incoming longshore drift, so that its position has remained static over the last 30 years. It is unlikely that Blacklands Gully or Little Gully have achieved this stability. / Thesis / Master of Science (MS)
|
3 |
Quantification du mouvement vertical de la croûte terrestre et de sa contribution au changement du niveau de la mer : le cas de la Côte Est du Canada, golfe du Saint-LaurentFeizabadi, Mohsen 12 1900 (has links)
Les changements du niveau de la mer sont un des indicateurs des changements climatiques qui affectent le monde depuis les dernière décennies. Dans les zones côtières, ce phénomène est à l'origine de l'érosion côtière, l'intrusion d'eau salée dans la nappe phréatique et les inondations. Les côtes du Canada ne sont pas épargnées. En effet, le niveau de la mer dans ces régions augmente actuellement et suit les tendances mondiales. Parmi ces zones côtières, celles du golfe du Saint-Laurent nous ont intéressées. Elles sont caractérisées par des propriétés physiques spécifiques comme l'isolement relatif par rapport l'océan Atlantique, la couverture de glace en hiver et la coulée de l'eau douce au printemps qui leurs confèrent un comportement particulier en termes de changements du niveau de la mer. Les changements du niveau de la mer peuvent être déterminés en intégrant les données des marégraphes et de l'altimétrie satellitaire que le résultat de cette procédure conduit à une détermination relative du niveau moyen de la mer. Cependant, parce que la structure de mesure de ces données est différente, certaines corrections doivent être appliquées. L'une des corrections parmi les plus essentielles est la longueur du Mouvement de Terrain Vertical (MTV) qui doit être prise en compte dans les données des marégraphes, car ces derniers sont connectés directement à la croûte terrestre. Différents phénomènes peuvent causer le MTV. À une échelle locale, la tectonique, l'affaissement et la sédimentation sont les facteurs qui créent le mouvement vertical et à une méso ou macro-échelle, la fonte des inlandsis qui entraîne une modification de la charge de masse de la surface de la terre, provoquent le mouvement des terres. Il existe divers modèles et méthodes de correction du MTV globaux et locaux, tels que l'Ajustement Isostatique Glaciaire (AIG), le Système Mondial de Navigation par Satellite (SMNS), l'Interférométrie par Radar Synthèse d'Ouverture (InRSO), Gravity Recovery and Climate Experiment (GRACE) et le calcul de la différence entre données marégraphiques et altimétriques par satellite. Parmi ces méthodes, l'utilisation de la vitesse verticale des données GPS est la plus précise. Cependant, en raison du faible nombre de stations GPS dans ou proximité des stations marégraphiques, l'utilisation d'une approche plus globale est inévitable. En utilisant cette correction, le niveau moyen absolu de la mer sera obtenu. Dans cette étude, l'évaluation du MTV se fait par un algorithme d'InRSO, appelé Diffuseurs Persistants InRSO (DPInRSO en anglais PSInSAR). Les images du RSO du satellite Sentinel-1 sont soumises à l'analyse DPInRSO. Afin d'évaluer la précision de cette approche, les résultats de DPInRSO (obtenus du logiciel Stanford Method for Persistent Scatterers (StaMPS)) pour deux régions de l'est du Canada (Halifax et St. John's) sont comparés à la GPS vitesse verticale en analysant les séries temporelles de données. Également, en utilisant la même méthode, le mouvement vertical des terres dans 24 stations marégraphiques du golfe du Saint-Laurent sera corrigé. L'étude du niveau moyen de la mer est mise en oeuvre en utilisant l'analyse spectrale (analyse harmonique et analyse spectrale des moindres carrés (ASMC)) afin de supprimer les effets à long terme des constituants de la marée (constituants annuels et semi-annuels). Aussi, pour évaluer le niveau moyen absolu de la mer (NMAM) dans la région considérée, le niveau moyen de la mer calculé est corrigé sur la base des résultats du MTV. En conclusion, la comparaison des résultats de la technique DPInRSO avec les données GPS indique le comportement similaire des tendances au cours de la période d'étude. En d'autres termes, la méthode DPInRSO mesure le mouvement vertical des terres en précision millimétrique dans la région d'étude (à l'exception d'une station) et elle peut être appliquée pour les régions qu'elles ne se connectent pas sur le positionnement GPS continu des marégraphes. Dans le cas d'un changement du niveau de la mer, l'incompatibilité entre les données marégraphiques et altimétriques en termes de temps rend la conclusion plus diffcile. Cependant, sur la base d'observations continues dans des séries temporelles de données altimétriques, nous avons obtenu une tendance plus homogène du niveau de la mer (niveau moyen de la mer) dans toutes les stations, mais pour évaluer le changement à long terme du niveau de la mer et en raison de l'emplacement exact de la station marégraphique, ces dernières données doivent être prises en compte (à la fois dans le calcul du niveau moyen de la mer et des constituants de la marée). Enfin, en raison du faible changement de MTV, les valeurs moyennes absolues du niveau de la mer sont très proches de celles relatives, ce qui indique que nous pouvons évaluer les changements du niveau de la mer dans le golfe du Saint-Laurent, en utilisant uniquement les données marégraphiques et altimétriques. En plus de faire des corrections, des cartes de la tendance du niveau de la mer et des différences de phase entre les stations marégraphiques seront représentées. La qualité des données des marégraphes et de l'altimétrie satellitaire sera discutée et rapportée sur les résultats tirés de l'étude. / Sea level changes are one of the indicators of climate change that has affected the world in recent decades. In coastal areas, this phenomenon has caused coastal erosion, saltwater intrusion into the groundwater and floods. These environmental changes can also be seen in Canada's coasts. Indeed, the sea level in these regions is currently increasing and follows the global trends. Among these coastal areas, those of the Gulf of St. Lawrence interested us. This area is characterized by specific physical properties such as relative isolation from the Atlantic Ocean, winter ice cover and spring freshwater flow that confer particular behavior in terms of sea level changes. Sea level changes can be determined by integrating the tide gauge and satellite altimetry data that the result of this procedure leads to a relative determination of mean sea level. However, because the measurement structures of these data are different, some corrections should be applied. One of the most essential corrections is the length of the Vertical Land Motion (VLM) which must be taken into account in tide gauge data, as these are connected directly to the Earth crust. Different phenomena can cause VLM. In the local scale, tectonics, subsidence and sedimentation are the factors that create vertical movement and in global scale, melting of ice sheets, which leads to change the mass loading of the earth's surface, cause the land motion. There are various global and local VLM correction models and methods such as, Glacial Isostatic Adjustment (GIA), Global Navigation Satellite Systems (GNSS), Interferometry Synthetic Aperture Radar (InSAR), Gravity Recovery and Climate Experiment (GRACE) and calculation of difference between satellite altimetry and tide gauge data. Between these methods, using the vertical velocity of GPS data is the most accurate one. However, due to the low number of GPS stations in or near the tide gauge stations, using a more comprehensive approach is inevitable. By applying this correction, the absolute mean sea level will be obtained. In this study, VLM is examined by one algorithm of InSAR which is called Persistent Scatterer InSAR (PSInSAR). The Sentinel-1 single-look SAR images are used for PSInSAR analysis. In order to accuracy assessment of this approach, the results of PSInSAR (obtained from Stanford Method for Persistent Scatterers software (StaMPS)) for two regions in east of Canada (Halifax and St. John's) are compared with GPS vertical velocity by analyzing their time series data. Equally, by using the same method, vertical land movement in 24 tide gauge station in Gulf of St. Lawrence will be corrected. Investigation of mean sea level is implemented by using the spectral analysis (Harmonic analysis and Least Square Spectral Analysis) in order to remove the long-term effects of tidal constituent (annual and semiannual constituents). Also, to assess the Absolute Mean Sea Level (AMSL) in considered region, calculated mean sea level is corrected based on the results of VLM. In conclusion, comparing of the results of PSInSAR technique with GPS data indicate the similar behavior of trends during the period of study. In other words, PSInSAR method measures vertical land motion in millimeter precision in study region (except of one station) and it can be applied for regions that they do not connect on continuous GPS positioning of tide gauges. In the case of sea level change, incompatibility between tide gauge and altimetry data in terms of time makes the conclusion harder. However, based on continues observations in time series of altimetry data, we obtained more homogeneous sea level trend (mean sea level) in all stations, but to evaluate the long-term sea level change and because of exact location of tide gauge station, this latter data must be considered (both in calculation of mean sea level and tidal constituents). Finally, because of small values of VLM, absolute mean sea level values are very close to relative one which indicate that, we can evaluate the sea level changes in Gulf of Saint Lawrence by using only the tide gauge and altimetry data. In addition to making corrections, the maps of sea level trend and phase differences between tide gauge stations will be represented. The quality of the tide gauge and satellite altimetry records will be discussed and reported over the drawn results of the study.
|
Page generated in 0.0832 seconds