Spelling suggestions: "subject:"must alleviation"" "subject:"must alleviations""
1 |
Aerodynamic Analysis of Variable Geometry Raked Wingtips for Mid-Range Transonic Transport AircraftJingeleski, David John 21 December 2012 (has links)
Previous applications have shown that a wingtip treatment on a commercial airliner will reduce drag and increase fuel efficiency and the most common types of treatment are blended winglets and raked wingtips. With Boeing currently investigating novel designs for its next generation of airliners, a variable geometry raked wingtip novel control effector (VGRWT/NCE) was studied to determine the aerodynamic performance benefits over an untreated wingtip. The Boeing SUGAR design employing a truss-braced wing was selected as the baseline. Vortex lattice method (VLM) and computational fluid dynamics (CFD) software was implemented to analyze the aerodynamic performance of such a configuration applied to a next-generation, transonic, mid-range transport aircraft. Several models were created to simulate various sweep positions for the VGRWT/NCE tip, as well as a baseline model with an untreated wingtip. The majority of investigation was conducted using the VLM software, with CFD used largely as a validation of the VLM analysis. The VGRWT/NCE tip was shown to increase the lift of the wing while also decreasing the drag. As expected, the unswept VGRWT/NCE tip increases the amount of lift available over the untreated wingtip, which will be very beneficial for take-off and landing. Similarly, the swept VGRWT/NCE tip reduced the drag of the wing during cruise compared to the unmodified tip, which will favorably impact the fuel efficiency of the aircraft. Also, the swept VGRWT/NCE tip showed an increase in moment compared to the unmodified wingtip, implying an increase in stability, as well providing an avenue for roll control and gust alleviation for flexible wings. CFD analysis validated VLM as a useful low fidelity tool that yielded quite accurate results. The main results of this study are tabulated "deltas" in the forces and moments on the VGRWT/NCE tip as a function of sweep angle and aileron deflection compared to the baseline wing. A side study of the effects of the joint between the main wing and the movable tip showed that the drag impact can be kept small by careful design. / Master of Science
|
2 |
Simultaneous Energy Harvesting and Vibration Control via Piezoelectric MaterialsWang, Ya 20 March 2012 (has links)
This work examines a novel concept and design of simultaneous energy harvesting and vibration control on the same host structure. The motivating application is a multifunctional composite sandwich wing spar for a small Unmanned Aerial Vehicle (UAV) with the goal of providing self-contained gust alleviation. The basic idea is that the wing itself is able to harvest energy from the ambient vibrations along with available sunlight during normal flight. If the wing experiences any strong wind gust, it will sense the increased vibration levels and provide vibration control to maintain its stability. This work holds promise for improving performance of small UAVs in wind gusts.
The proposed multifunctional wing spar integrates a flexible solar cell array, flexible piezoelectric wafers, a thin film battery and an electronic module into a composite sandwich structure. The basic design factors are discussed for a beam-like multifunctional wing spar with load-bearing energy harvesting, strain sensing and self-controlling functions. Three-point bending tests are performed on the composite sandwich structure for bending strength analysis and bending stiffness prediction under a given safety factor. Additional design factors such as the configuration, location and actuation type of each piezoelectric transducer are investigated for optimal power generation. The equivalent electromechanical representations of a multifunctional wing spar is derived theoretically, simulated numerically and validated experimentally.
Special attention is given to the development of a reduced energy control (REC) law, aiming to minimize the actuation energy and the dissipated heat. The REC law integrates a nonlinear switching algorithm with a positive strain feedback controller, and is represented by a positive feedback operation amplifier (op-amp) and a voltage buffer op-amp for each mode. Experimental results exhibit that the use of nonlinear REC law requires 67.3 % less power than a conventional nonlinear controller to have the same settling time under free vibrations.
Nonlinearity in the electromechanical coupling coefficient of the piezoelectric transducer is also observed, arising from the piezoelectric hysteresis in the constitutive equations coupling the strain field and the electric field. If a constant and voltage-independent electromechanical coupling coefficient is assumed, this nonlinearity results in considerable discrepancies between experimental measurements and simulation results. The voltage-dependent coupling coefficient function is identified experimentally, and a real time adaptive control algorithm is developed to account for the nonlinear coupling behavior, allowing for more accurate numerical simulations.
Experimental validations build upon recent advances in harvester, sensor and actuator technology that have resulted in thin, light-weight multilayered composite sandwich wing spars. These multifunctional wing spars are designed and validated to able to alleviate wind gust of small UAVs using the harvested energy. Experimental results are presented for cantilever wing spars with micro-fiber composite transducers controlled by reduced energy controllers with a focus on two vibration modes. A reduction of 11dB and 7dB is obtained for the first and the second mode using the harvested ambient energy. This work demonstrates the use of reduced energy control laws for solving gust alleviation problems in small UAVs, provides the experimental verification details, and focuses on applications to autonomous light-weight aerospace systems. / Ph. D.
|
Page generated in 0.076 seconds