• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 11
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 13
  • 12
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Towards cell-type specific neuromodulation for spinal cord injury recovery

Moukarzel, George January 2022 (has links)
Spinal cord injury (SCI) causes life-long neurological impairment, with loss of sensory and motor function distal to the point of injury. There are approximately 300,000 patients living with SCI in the United States, and currently no effective treatment, reducing their quality of life. Amongst other things, proprioception, which has been determined essential for normal locomotion, can be lost with SCI. Epidural Electric Stimulation (EES), that is thought to excite large diameter afferent fibers (LDAF), has been found to improve recovery from spinal cord injury in conjunction with movement rehabilitation in animal models and humans. This represents an exciting new approach to help these patients. However, many open questions remain about how and why EES works. Chief among them are 1) which of the afferent fibers are necessary and sufficient to promote better recovery, and 2) what are the mechanisms of plasticity in the spinal cord that underly improvement. Here, we sought to address the first question by using viral and genetic tools to begin to target specific subsets of LDAF. First, we use a viral vector that preferably transduces only in the large diameter afferent fibers (LDAF) in the Dorsal Root Ganglia (DRG), and then specifically only the proprioceptors within the LDAF, by using a transgenic rat line that expresses Cre recombinase in Parvalbumin, a marker for proprioceptive neurons in the DRG. This approach consists of using the chemogenetic modulator of neuronal activity Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), which are activated by a putatively inert drug, clozapine-N-oxide (CNO), that crosses the blood brain barrier. While we were able to specifically target LDAF with excitatory DREADDs in L3-L5 DRGs in wild type rats, we were unsuccessful at specifically targeting proprioceptors by using the Pvalb-iCre rat line. Additionally, we studied the effect of exciting LDAF on rats with a 200KDyn SCI. CNO withdrawal on the week 7 stage of the recovery was associated with worse ladder performance than the previous and following weeks, as well as worse kinematic behavior of the same week on lower speeds in ankle movement. These results suggest that DREADDs activation is necessary for changes in movement at longer times post injury. It does not rule out that plasticity in neural circuitry has occurred but suggests that plasticity may rely on afferent activation. Finally, we sought to develop new methods to overcome skin motion artifact in rat kinematics by tattooing the knee area under the skin and recording infrared high-speed videos of moving rats which would correct joint calculations beyond just triangulation methods, as well as a novel MATLAB application that can accurately and reliably perform automated H-Reflex measurements, test the stimulating electrodes, and carry out typical instantaneous analyses, which in return allows for faster data collection with reduced human error, and subsequently result in higher research quality. / Bioengineering
12

Re-educating the injured spinal cord by operant conditioning of a reflex pathway

Chen, Yi 21 September 2006 (has links)
No description available.
13

Einfluss des Anästhetikuns Sevofluran und schmerzhafter Stimuli auf den H-Reflex

Grünewald, Matthias Lars 15 December 2003 (has links)
Einleitung: Für die Messung der "Narkosetiefe" werden vorwiegend Parameter des Elektroenzephalogramms (EEG) untersucht, welche offenbar keine Aussage zur Unterdrückung von Bewegungen auf Schmerzreize treffen können. Dies ist auch wenig verwunderlich, da Untersuchungen an Tieren die Ausschaltung einer Bewegung auf Schmerzreiz durch Anästhetika auf der spinalen Ebene erwarten lassen. Der spinale H-Reflex, ein elektrisch ausgelöster, monosynaptischer Reflex, wurde bereits zur Überwachung der Unterdrückung von Bewegungen während der Narkose vorgeschlagen. Diese Arbeit diente der vergleichenden Untersuchung der H-Reflex-Amplitude mit EEG-Parametern unter Sevofluran-Narkosen. Es wurden Konzentrations-Wirkungs-Kurven ermittelt, sowie die Eignung als Parameter zur Vorhersage von Bewegungen auf schmerzhafte Reize überprüft. Weiterhin sollte der Effekt des schmerzhaften Reizes auf die H-Reflex-Amplitude selbst aufgeklärt werden. Methodik: Nach Zustimmung der Ethikkommission und schriftlicher Einwilligung wurden 28 Patientinnen in die Studie eingeschlossen. Sie wurden präoperativ untersucht. Nach anfänglicher Vertiefung bis zur Toleranz einer Larynxmaske, wurde die Narkose mit Hilfe der "up-and-down"-Methode auf einen Wert nahe der minimalen alveolären Konzentration (MAC) eingestellt. Nach mindestens 15 Minuten konstanter Konzentration wurde von einem "steady-state" ausgegangen und am volaren Unterarm ein elektrisch ausgelöster Schmerzreiz (Tetanus-Reiz, 60 mA) appliziert. Für die Ermittlung der Konzentrations-Wirkungs-Kurve diente ein pharmakokinetisch-pharmadynamisches Modell, welches auf einem sigmoidalen Emax-Modell beruht. Die Eignung eine Bewegung vorherzusagen wurde anhand der "Prediction Probability" (PK-Wert) überprüft. Ergebnisse: Bei 14 Patientinnen konnte der H-Reflex kontinuierlich über die gesamte Messperiode ausgelöst werden. Die Wachwerte betrugen für die H-Reflex-Amplituden 6,5 (+/- 4,1 SD) mV. Sevofluran unterdrückt die H-Reflex-Amplituden konzentrationsabhängig. Die Unterdrückung konnte gut durch das sigmoidale Modell dargestellt werden (Median - r^2 = 0,96). Die Unterdrückung der H-Reflex-Amplitude unterliegt einer signifikant steileren Konzentrations-Wirkungs-Beziehung als die der EEG-Parameter spektrale Eckfrequenz 95 (SEF95) und bispektraler Index (BIS). Die H-Reflex-Amplitude konnte Bewegungen auf einen Schmerzreiz mit einer PK von 0,74 vorhersagen, während mittels der EEG-Parameter SEF95 und BIS lediglich zufällige Aussagen bezüglich stattfindender Bewegungen getroffen werden können. Der Schmerzreiz veränderte die H-Reflex-Amplitude, das spontane frontale Elektromyogramm und die Herzfrequenz, nicht jedoch die kortikal abgeleiteten Parameter BIS und SEF95. Schlussfolgerung: Aus dieser Arbeit ergeben sich Hinweise, dass die Unterdrückung von Bewegungen auf schmerzhafte Reize und die Unterdrückung der H-Reflex-Amplitude durch Sevofluran eng verknüpft sind. Auch wenn kein kausaler Zusammenhang besteht, so würde dies die hohe Vorhersagekraft der H-Reflex-Amplituden für Bewegungen auf Schmerzreiz erklären. Sie ist zur Überwachung der Unterdrückung von groben gezielten Bewegungen während einer Narkose geeignet. Mittels H-Reflex-Amplituden können Aktivierungen des Rückenmarkes registriert werden, welche auf kortikaler Ebene nicht sichtbar werden. Zukünftige auf dem H-Reflex basierende Studien können weitere Einsichten in die Mechanismen der Anästhesie liefern und behilflich an der Erarbeitung von Richtlinien zur optimalen Medikamentendosierung sein. / Introduction: The measurement of "depth of anesthesia" is mostly done by parameters of the electroencephalogram (EEG), which can not make a statement about the suppression of movement due to painful stimulation. This is not surprising, looking at recent animal studies that assume the anesthetic induced unresponsiveness to noxious stimulation at the side of the spinal cord. The spinal H-reflex, an electric induced, monosynaptical reflex has been proposed to monitor the suppression of movements during anesthesia. This dissertation shows a comparative examination of the H-reflex-amplitude and parameters of the EEG under anesthesia with sevoflurane. Concentration-response functions have been determined, the prediction of movement to painful stimulation has been tested. Also the effect of the painful stimulus itself on the H-reflex-amplitude has been discovered. Methods: After approval of the institutional review board and informed consent were obtained, 28 patients were included into this study. The examination has been done prior to surgery. After induction of anesthesia until a laryngeal mask was tolerated, sevoflurane was decreased to a level close to minimum alveolar concentration (MAC) using the "up-and-down" method. After at least 15 minutes of constant sevoflurane concentration a "steady-state" was assumed and a painful electrical stimulation (tetanic stimulus of 60mA) was applied. The concentration-response functions were determined using pharmacokinetic and pharmacodynamic modeling, based on a sigmoid Emax model. To estimate and compare the predictive value of the parameters, prediction probability Pk was calculated. Results: On 14 patients the H-reflex could been measured continuously throughout the study period. At awake level, H-reflexes had a mean amplitude of 6,5 (+/- 4,1 SD) mV. Sevoflurane depresses the H-reflex-amplitude in a concentration dependent way, which was well modeled by the sigmoid Emax model (median r^2 = 0,96). The depression of the H-reflex-amplitude underlies a significant steeper concentration-response function as the EEG-parameters spectral edge frequency (SEF95) and bispectral index (BIS). H-reflex-amplitude could predict movement on to painful stimulation with a Pk value of 0,74, whereas EEG-parameters could only make statements, concering upcoming movements, by chance. The painful stimulation changed H-reflex-amplitude, frontal recorded electromyogram and heart-frequency but not the cortical recorded parameters BIS and SEF95. Conclusions: Results indicate that the suppression of movement and the suppression of the H-reflex-amplitude caused by sevoflurane are close connected. Although it does not imply a causual connection, it would explain the high predictive value of the H-reflex-amplitude for motor responses to noxious stimuli. H-reflex-amplitude can be used to monitor the suppression of gross purposeful movements during sevoflurane anesthesia. Using H-reflex-amplitude spinal activation can be registered, which are not seen on cortical level. Coming up studies based on the H-reflex can help to get more insights into the mechanisms of anesthesia and help to develop guidelines for optimal drug dosing.
14

Untersuchung der Erregbarkeit spinaler Motoneurone während Propofolmononarkosen

Müller, Katja 08 February 2006 (has links)
Einleitung: Zur Messung der Narkosetiefe standen bisher vor allem aus dem EEG abgeleitete Parameter im Mittelpunkt der Forschung, die sehr gut geeignet sind, die hypnotische Komponente der Anästhesie abzubilden. Eine Vorhersage auf motorische Reaktionen lassen sie jedoch nicht zu. Eine vorausgehende Studie hat gezeigt, dass unter Sevofluran der spinale H-Reflex mit der chirurgischen Immobilität korreliert. Die vorliegende Studie untersucht, ob motorische Reaktionen während Propofolmononarkosen mittels H-Reflex besser vorausgesagt werden können als mit den EEG-Parametern Bispektraler Index (BIS), spektrale Entropie (SE) und response Entropie (RE). Außerdem wurde der Einfluss von Propofol auf die Erholungskurve des H-Reflexes unter Doppelstimulation untersucht. Methodik: Nach Zustimmung der Ethikkommission und schriftlicher Einwilligung wurden 17 Patienten in die Studie eingeschlossen und ausgewertet. Nach der „up-and-down“-Methode von Dixon wurde die Konzentration von Propofol auf einen Wert eingestellt, bei dem die Hälfte der Patienten auf einen am Unterarm ausgelösten elektrischen Tetanus-Reiz (60 mA) mit einer gezielten motorischen Reaktion reagierten. Nach einer Kontrollmessung wurde die Konzentration von Propofol 15 min konstant gehalten. Danach wurde von einem „steady state“ ausgegangen und der Tetanusreiz wurde ausgelöst. Die Vorhersagefähigkeit der möglichen Narkosetiefe-parameter auf eine Bewegung wurde mit der „Prediction Probability“ (PK-Wert) ermittelt. Im zweiten Teil wurde der H-Reflex anhand der Doppelstimulation mit größer werdenden Interstimulusintervallen (50-8000 ms) untersucht. Ergebnisse: Die Wachwerte für die H-Reflexamplitude liegen bei 5,9 (± 3,8 SD) mV. Der von uns berechnete C50-Tetanus-Wert beträgt 4,5 ± 0,45 mg/l. Die PK-Werte 0,47 für den H-Reflex und 0,45 für die Herzfrequenz lassen nur zufällige Aussagen auf motorische Reaktionen zu. Die EEG-Parameter zeigen höhere PK-Werte: BIS (0,74), SE (0,73), RE (0,71). In diesem Bereich liegt auch der PK-Wert der Propofolzielkonzentration (0,76). Der Schmerzreiz beeinflusste weder die H-Reflexamplitude noch die EEG-Parameter. Bei der Doppelstimulation zeigte sich eine verzögerte Erholung des H-Reflexes unter Doppelstimulation, die am stärksten im Bereich der interkurrenten Fazilitation unter den Interstimulusabständen von 150 und 200 ms. Schlussfolgerung: Für die Vorhersage motorischer Reaktionen während Propofolmono-narkosen sind EEG-Parameter wie BIS, SE und RE etwas besser geeignet als der spinale H-Reflex. Dies steht im Gegensatz zu einer Untersuchung mit Sevofluran und wird auf die unterschiedlichen Wirkmechanismen von volatilen und intravenösen Anästhetika zurückgeführt. Die Unterdrückung der Erholungskurve des H-Reflexes unter Doppelstimula-tion, die vor allem im Bereich der interkurrenten Fazilitation stattfindet, ist möglicherweise durch eine Reduktion supraspinaler exzitatorischer Einflüsse zu erklären. / Introduction: The measurement of „depth of anaesthesia“ is mostly done by parameters of the electroencephalogram (EEG) which can predict hypnosis whereas the prediction of immobility is not possible with those parameters. A previous study has shown that the H-reflex amplitude can be used for monitoring of immobility during sevoflurane anaesthesia. This study examined whether the prediction of movement to painful stimulation is also possible during propofol anaesthesia on the basis of the H-reflex-amplitude compared with the EEG-parameters bispectral index (BIS), spectral entropy (SE) and response entropy (RE). Furthermore the influence of propofol on the H-reflex-recovery under double pulse stimulation was tested. Methods: After approval of the institutional review board and informed consent were obtained, 17 patients were included into this study. Using the “up-and down”-method the concentration of propofol was adjusted to the level where half of the patients do not move to painful stimulation (C50-tetanus-value). Propofol was administered after a baseline measurement. After at least 15 minutes of constant propofol concentration a "steady-state" was assumed and a painful electrical stimulation (tetanic stimulus of 60mA) was applied. To estimate and compare the predictive value of the parameters, prediction probability Pk was calculated. The H-reflex during double pulse stimulation was examined with interstimulus intervals ranging from 50 to 8000 ms. Results: At awake level, H-reflexes had a mean amplitude of 5.9 (+/- 3.8 SD) mV. The calculated C50-tetanus-value was 4.5 (+/- 0.45 SD) mg/l. With Pk-values of 0.47 for the H-reflex amplitude and 0.45 for the heart rate the prediction of movements is just by chance. The Pk-values of the EEG-parameters were higher: BIS (0.74), SE (0.73), RE (0.71). At this level was also the Pk-value of the propofol concentration (0.76). The painful stimulation influenced neither the H-reflex amplitude nor the EEG-parameters. The double pulse stimulation showed a delay in the H-reflex-recovery at interstimulus intervals of 150 and 200 ms. Conclusion: The prediction of movement during propofol anaesthesia is better using the EEG-parameters BIS, SE and RE compared to the H-reflex-amplitude. These results are in contrast to a previous study with sevoflurane which can be explained by the different molecular mechanisms of action of volatile and intravenous anaesthetics. The depression of the recovery-curve of the H-reflex under double pulse stimulation is possibly due to the reduction of supraspinal excitatory influences.
15

H-reflex při provádění pasivních pohybů / H reflex during pasive movements

Borský, Ondřej January 2012 (has links)
Title: Motoneuron excitability depending on the level of muscle stretch Aim: The aim of this thesis is to evaluate if passive muscle lenght change may influence parameters of H - reflex of soleus muscle Method: Tibial nerve stimulation in the fossa poplitea area was performed on 6 persons while passive stretching or lengthening of the muscle. Action potentials were captured on soleus muscle. Stimulation was performed in three different time periods - 4s, 2s, 1s. Each period was performed twice. First in passive muscle stretching then the passive shortening. The Hmax and Mmax values during passive muscle stretching and shortening were evaluated and compared. Results: The measurment results showed that there was a significant decrease in the Hmax values during passive muscle stretching. Mmax values were evaluated as passive muscle length change independent. Keywords: EMG, recruitment curve, H-reflex, M-wave, m.soleus, excitability
16

Taktilní diskriminace a dráždivost α-motoneuronů / Tactile discrimination and excitability of α-motoneurons

Světlíková, Tereza January 2012 (has links)
Title of diploma thesis: Tactile discrimination and excitability of alpha motoneurons Objectives: The aim of this thesis is to detect whether tactile discrimination tasks affect the excitability of the alpha motoneurons. Methods: Seven volunteers aged between 20 and 26 years participated in this study. The H reflex, (M wave) were recorded during three control and three experimental conditions. The control conditions preceded each experimental condition. By stimulating the tibialis nerve in the popliteal fossa the H reflex was elicited and its amplitude and latency measured at rest (control) and during tactile discrimination tasks (experimental). As tactile discrimination tasks, three separate tasks were chosen-tactile stimulation, escape reaction to tactile stimulation, and two-point discrimination. We used an EMG stimulator with a constant voltage output and monophasic squared pulses, with a 0,5 ms interval. The stimulation was switched on manually every 3-5 seconds. To detect the electrical potential of the soleus muscle, we used a surface EMG device, a GrassTelefactor, with galvanic isolation complying with EU standards. The parameters measured were the latency and amplitude of the H reflex and M wave during the tactile discrimination tasks and these were then compared to the values at rest. The...
17

Náborová křivka H-reflexu v diagnostice pseuradikulárních syndromů / Recruitment curve of H reflex in diagnostics of pseudoradicular syndrom

Vocilka, Jindřich January 2013 (has links)
Title: Recruitment curve of H-reflex in diagnostics of non-radicular syndroms Objectives: The main objective of this work is to verify the conductivity of nerve structures examination recruitment curves H-reflex and M-wave in the EMG examination in probands with non-radicular syndrome L5/S1. Methods: We tested 12 probands clinical trial diagnosed with non-radicular syndrome L5/S1. The test sample was compared with an equally large group of control probands. H-reflex of m.soleus was examined by bipolar stimulation in the fossa poplitea of tibial nerve. The results of an electromyographic examination was evaluated to asymptomatic and symptomatic side. Amplitude of H-reflex and M-wave, slope of recruitment curve, peaks of recruitment curves for the H-reflex and M-wave and the ratio Hmax / Mmax were evaluated and statistically compared. Results: Results of non-radicular syndrome L5/S1showed no significant change in the H-reflex. Due to this result we can suggests that there is no damage in nerve fibres in patients with non-radicular syndrome. Keywords: non-radicular syndrome, H-reflex, M-wave, recruitment curve
18

Efeitos de diferentes freqüências e amplitudes de vibração unilateral do tendão calcâneo na orientação postural e no reflexo H em humanos / Effects of Achilles tendon vibration of different frequencies and amplitudes on postural orientation and H reflex in humans

Pedão, Sabrina Tiago 30 March 2010 (has links)
Uma vibração aplicada a um tendão muscular aumenta a freqüência de disparos de aferentes, como os de fusos neuromusculares Ia e II, cujas terminações afetam circuitos da medula espinhal e com isto podem influenciar o controle motor. O objetivo deste estudo foi analisar o efeito de vibrações a duas freqüências (15 e 80Hz) e amplitudes de 1 e 2,5mm aplicadas ao tendão calcâneo direito sobre o sistema de controle postural e sobre a circuitaria neural associada a reflexos monosinápticos da perna. A hipótese era de que a vibração de alta freqüência ativasse preferencialmente os aferentes de fuso neuromuscular de tipo Ia enquanto a vibração a 15 Hz ativasse preferencialmente os aferentes de tipo II. Isto significaria que a vibração a 80 Hz teria forte efeito sobre o reflexo H, enquanto a vibração a 15 Hz teria um efeito significativo sobre a postura. Participaram deste estudo 14 sujeitos sãos. Na postura ereta quieta, foi realizada a aquisição do reflexo H enquanto o tendão calcâneo era vibrado. Após um intervalo de descanso, foi realizada a aquisição do Centro de Pressão (COP) tanto na direção Ântero-Posterior (AP) quanto na Médio-Lateral (ML) em paralelo à aquisição bilateral do EMG dos músculos (SO, TA, GL e GM) nas três condições (antes, durante e após a vibração do tendão calcâneo). Para os estímulos de 1 e 2,5mm realizados a 80 Hz as diferenças foram significativas em relação a todas as variáveis quando comparadas nas três condições, com exceção apenas do DP do TA e GM e, do valor médio do COP ML a 1mm. Em relação à freqüência de 15 Hz, notou-se que não houve diferenças significativas tanto no COP AP e ML quanto no DP do EMG dos músculos da perna esquerda entre as três condições. Quanto aos dados referentes ao DP dos músculos analisados na perna direita, os resultados mostraram que não houve efeitos significativos tanto ao utilizar 15Hz como 80Hz em todas as três condições. Em geral, estes dados mostraram que durante um estímulo vibratório mais forte o COP deslocouse mais para a direção posterior e lateral esquerda do sujeito. E, após interromper o estímulo, em alguns casos o COP ainda mostrava uma alteração prolongada. Em relação à amplitude média do reflexo H, para as amplitudes de vibração de 1 e 2,5 mm a 15 e 80 Hz, as análises apontaram que durante a vibração houve uma forte redução na amplitude do reflexo, sendo que em alguns casos ainda permaneceram reduzidas na condição pós-vibratória. Os resultados mostram que a vibração aplicada ao tendão calcâneo pode ser um forte estímulo à medula e capaz de alterar o controle postural, dependendo de suas características, uma vez que, com parâmetros apropriados, induziu alterações imediatas nos resultados do reflexo H, do COP e do EMG (p.e.). Porém, as alterações a vibrações aplicadas de modo a ativar seletivamente as fibras aferentes do grupo Ia e II mostraram efeitos diferenciais. Vibrações a 80Hz de frequência e a 1 e 2,5mm foram as que mais causaram alterações. A significativa ação sobre o reflexo H é compatível com o aumento da frequência de disparos dos aferentes Ia. Entretanto a forte ação sobre o COP dessas vibrações a 80 Hz sugere que os aferentes Ia podem ter uma importância maior do que a literatura recente tem preconizado, pelo menos para correções a perturbações posturais, uma vez que pode-se supor que a 80 Hz e 1 mm de amplitude os aferentes tipo II são pouco ativados. Por outro lado, a vibração a 15 Hz teve um efeito signficativo sobre o reflexo H mas sem afetar o COP, o que sugere que esta frequência consegue ativar a via Ia, causando depressão homossináptica e/ou inibição pré-sináptica dos aferentes Ia, mas sem chegar a influir no COP de forma significativa. Os resultados são interessantes do ponto de vista de aplicações em potencial para áreas como fisioterapia e reabilitação de pessoas com alterações posturais na clínica. Adicionalmente, abrem novas questões quanto às interpretações fisiológicas de vibrações a diferentes freqüências sobre o tendão calcâneo. / A vibration applied to a muscle tendon increases the firing frequency of afferents of types Ia and II innervating muscle spindles, and hence affects the spinal cord circuits and this can affect motor control. The aim of this study was to analyze the effect of vibrations of two frequencies (15 and 80Hz) and two amplitudes (1 and 2.5 mm) applied to the right Achilles tendon on the standing posture and on the H reflex. The hypothesis was that the high frequency vibration activates preferentially the Ia axons while the 15 Hz vibration activates preferentially the type II axons and hence the 80 Hz vibration would have a strong effect on the H reflex and the 15 Hz vibration would have a strong effect on posture. Fourteen subjects participated in this study. Their H reflex was acquired in the upright position while their Achilles tendon was vibrated. After an interval of rest, the center of pressure (COP) signal was acquired for both the antero-posterior (AP) and the medio-lateral (ML) directions in parallel with the acquisition of bilateral electromyograms (EMG) (SO, TA, and GL GM) in the three conditions (before, during and after the vibration of the Achilles tendon). For 1 and 2.5 mm vibrations at 80 Hz the differences were significant for all variables compared in the three conditions, except for the standard deviation (SD) of the TA and GM EMGs and the average value of COP ML for 1mm vibration. For the 15 Hz vibration, there were no significant differences in both the AP and ML COP and SD of the EMG of the left leg in the three conditions. The results for the EMG SD of the right leg showed no significant effects when using both 15Hz and 80Hz in all three conditions. These data showed that during a stronger vibratory stimulus the COP shifted more to the posterior direction and the left side of the subject. And, after stopping the stimulus, in some cases, the COP had not returned to the initial position. In relation to the mean H reflex amplitude for 1 and 2.5 mm vibrations at 15 and 80 Hz, the analysis showed that during vibration there was a stronger reduction in the amplitude of the H reflex, and in some cases the amplitude remained reduced in the post-vibratory period. The results showed that the vibration applied to the Achilles tendon can be a powerful stimulus to the spinal cord and capable of altering the postural control. The effects depended on the vibration features, since, with appropriate parameters, it led to immediate changes in the results of the H reflex, the COP and left leg EMG. However, 80 Hz vibration (1 and 2.5 mm) was the one that caused the largest changes both on COP and H reflex amplitude. The significant action on the H reflex is consistent with the increased frequency of firing of Ia afferent. However the strong action on the COP of vibrations at 80 Hz suggests that the Ia afferents may have a greater importance than what the recent literature has suggested, at least for postural corrections to disturbances, since it can be assumed that the type II afferents are little activated at 80 Hz and 1 mm amplitude. Furthermore, vibration at 15 Hz had a significant effect on the H reflex without affecting the COP, suggesting that vibrations at this frequency can activate Ia afferents, causing homosynaptic depression and / or presynaptic inhibition of Ia afferents, but without influencing the COP significantly. The results are interesting from the standpoint of potential applications to areas such as physical therapy and rehabilitation of patients in the clinic. Additionally, they raise new questions about the physiological mechanisms behind vibratory stimuli applied at different frequencies on the Achilles tendon.
19

Human limb vibration and neuromuscular control

McHenry, Colleen Louise 01 May 2015 (has links)
Mechanical loading can modulate tissue plasticity and has potential applications in rehabilitation science and regenerative medicine. To safely and effectively introduce mechanical loads to human cells, tissues, and the entire body, we need to understand the optimal loading environment to promote growth and health. The purpose of this research was 1) to validate a limb vibration and compression system; 2) to determine the effect of limb vibration on neural excitability measured by sub-threshold TMS-conditioned H-reflexes and supra-threshold TMS; 3) to determine changes in center of pressure, muscle activity, and kinematics during a postural task following limb vibration; 4) to determine the effect of vibration on accuracy and long latency responses during a weight bearing visuomotor task. The major findings of this research are 1) the mechanical system presented in the manuscript can deliver limb vibration and compression reliably, accurate, and safely to human tissue; 2) sub-threshold cortical stimulation reduces the vibration-induced presynaptic inhibition of the H-reflex. This reduction cannot be attributed to an increase in cortical excitability during limb vibration because the MEP remains unchanged with limb vibration; 3) limb vibration altered the soleus and tibialis EMG activity during a postural control task. The vibration-induced increase in muscle activity was associated with unchanged center of pressure variability and reduced center of pressure complexity; 4) healthy individuals were able to accommodate extraneous afferent information due to the vibration interventions They maintained similar levels of accuracy of a visuomotor tracking task and unchanged long latency responses during an unexpected perturbation.
20

Efeitos de diferentes freqüências e amplitudes de vibração unilateral do tendão calcâneo na orientação postural e no reflexo H em humanos / Effects of Achilles tendon vibration of different frequencies and amplitudes on postural orientation and H reflex in humans

Sabrina Tiago Pedão 30 March 2010 (has links)
Uma vibração aplicada a um tendão muscular aumenta a freqüência de disparos de aferentes, como os de fusos neuromusculares Ia e II, cujas terminações afetam circuitos da medula espinhal e com isto podem influenciar o controle motor. O objetivo deste estudo foi analisar o efeito de vibrações a duas freqüências (15 e 80Hz) e amplitudes de 1 e 2,5mm aplicadas ao tendão calcâneo direito sobre o sistema de controle postural e sobre a circuitaria neural associada a reflexos monosinápticos da perna. A hipótese era de que a vibração de alta freqüência ativasse preferencialmente os aferentes de fuso neuromuscular de tipo Ia enquanto a vibração a 15 Hz ativasse preferencialmente os aferentes de tipo II. Isto significaria que a vibração a 80 Hz teria forte efeito sobre o reflexo H, enquanto a vibração a 15 Hz teria um efeito significativo sobre a postura. Participaram deste estudo 14 sujeitos sãos. Na postura ereta quieta, foi realizada a aquisição do reflexo H enquanto o tendão calcâneo era vibrado. Após um intervalo de descanso, foi realizada a aquisição do Centro de Pressão (COP) tanto na direção Ântero-Posterior (AP) quanto na Médio-Lateral (ML) em paralelo à aquisição bilateral do EMG dos músculos (SO, TA, GL e GM) nas três condições (antes, durante e após a vibração do tendão calcâneo). Para os estímulos de 1 e 2,5mm realizados a 80 Hz as diferenças foram significativas em relação a todas as variáveis quando comparadas nas três condições, com exceção apenas do DP do TA e GM e, do valor médio do COP ML a 1mm. Em relação à freqüência de 15 Hz, notou-se que não houve diferenças significativas tanto no COP AP e ML quanto no DP do EMG dos músculos da perna esquerda entre as três condições. Quanto aos dados referentes ao DP dos músculos analisados na perna direita, os resultados mostraram que não houve efeitos significativos tanto ao utilizar 15Hz como 80Hz em todas as três condições. Em geral, estes dados mostraram que durante um estímulo vibratório mais forte o COP deslocouse mais para a direção posterior e lateral esquerda do sujeito. E, após interromper o estímulo, em alguns casos o COP ainda mostrava uma alteração prolongada. Em relação à amplitude média do reflexo H, para as amplitudes de vibração de 1 e 2,5 mm a 15 e 80 Hz, as análises apontaram que durante a vibração houve uma forte redução na amplitude do reflexo, sendo que em alguns casos ainda permaneceram reduzidas na condição pós-vibratória. Os resultados mostram que a vibração aplicada ao tendão calcâneo pode ser um forte estímulo à medula e capaz de alterar o controle postural, dependendo de suas características, uma vez que, com parâmetros apropriados, induziu alterações imediatas nos resultados do reflexo H, do COP e do EMG (p.e.). Porém, as alterações a vibrações aplicadas de modo a ativar seletivamente as fibras aferentes do grupo Ia e II mostraram efeitos diferenciais. Vibrações a 80Hz de frequência e a 1 e 2,5mm foram as que mais causaram alterações. A significativa ação sobre o reflexo H é compatível com o aumento da frequência de disparos dos aferentes Ia. Entretanto a forte ação sobre o COP dessas vibrações a 80 Hz sugere que os aferentes Ia podem ter uma importância maior do que a literatura recente tem preconizado, pelo menos para correções a perturbações posturais, uma vez que pode-se supor que a 80 Hz e 1 mm de amplitude os aferentes tipo II são pouco ativados. Por outro lado, a vibração a 15 Hz teve um efeito signficativo sobre o reflexo H mas sem afetar o COP, o que sugere que esta frequência consegue ativar a via Ia, causando depressão homossináptica e/ou inibição pré-sináptica dos aferentes Ia, mas sem chegar a influir no COP de forma significativa. Os resultados são interessantes do ponto de vista de aplicações em potencial para áreas como fisioterapia e reabilitação de pessoas com alterações posturais na clínica. Adicionalmente, abrem novas questões quanto às interpretações fisiológicas de vibrações a diferentes freqüências sobre o tendão calcâneo. / A vibration applied to a muscle tendon increases the firing frequency of afferents of types Ia and II innervating muscle spindles, and hence affects the spinal cord circuits and this can affect motor control. The aim of this study was to analyze the effect of vibrations of two frequencies (15 and 80Hz) and two amplitudes (1 and 2.5 mm) applied to the right Achilles tendon on the standing posture and on the H reflex. The hypothesis was that the high frequency vibration activates preferentially the Ia axons while the 15 Hz vibration activates preferentially the type II axons and hence the 80 Hz vibration would have a strong effect on the H reflex and the 15 Hz vibration would have a strong effect on posture. Fourteen subjects participated in this study. Their H reflex was acquired in the upright position while their Achilles tendon was vibrated. After an interval of rest, the center of pressure (COP) signal was acquired for both the antero-posterior (AP) and the medio-lateral (ML) directions in parallel with the acquisition of bilateral electromyograms (EMG) (SO, TA, and GL GM) in the three conditions (before, during and after the vibration of the Achilles tendon). For 1 and 2.5 mm vibrations at 80 Hz the differences were significant for all variables compared in the three conditions, except for the standard deviation (SD) of the TA and GM EMGs and the average value of COP ML for 1mm vibration. For the 15 Hz vibration, there were no significant differences in both the AP and ML COP and SD of the EMG of the left leg in the three conditions. The results for the EMG SD of the right leg showed no significant effects when using both 15Hz and 80Hz in all three conditions. These data showed that during a stronger vibratory stimulus the COP shifted more to the posterior direction and the left side of the subject. And, after stopping the stimulus, in some cases, the COP had not returned to the initial position. In relation to the mean H reflex amplitude for 1 and 2.5 mm vibrations at 15 and 80 Hz, the analysis showed that during vibration there was a stronger reduction in the amplitude of the H reflex, and in some cases the amplitude remained reduced in the post-vibratory period. The results showed that the vibration applied to the Achilles tendon can be a powerful stimulus to the spinal cord and capable of altering the postural control. The effects depended on the vibration features, since, with appropriate parameters, it led to immediate changes in the results of the H reflex, the COP and left leg EMG. However, 80 Hz vibration (1 and 2.5 mm) was the one that caused the largest changes both on COP and H reflex amplitude. The significant action on the H reflex is consistent with the increased frequency of firing of Ia afferent. However the strong action on the COP of vibrations at 80 Hz suggests that the Ia afferents may have a greater importance than what the recent literature has suggested, at least for postural corrections to disturbances, since it can be assumed that the type II afferents are little activated at 80 Hz and 1 mm amplitude. Furthermore, vibration at 15 Hz had a significant effect on the H reflex without affecting the COP, suggesting that vibrations at this frequency can activate Ia afferents, causing homosynaptic depression and / or presynaptic inhibition of Ia afferents, but without influencing the COP significantly. The results are interesting from the standpoint of potential applications to areas such as physical therapy and rehabilitation of patients in the clinic. Additionally, they raise new questions about the physiological mechanisms behind vibratory stimuli applied at different frequencies on the Achilles tendon.

Page generated in 0.0638 seconds