• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Morphological effects of organic and inorganic semiconducting materials by scanning probe microscopy

Glaz, Micah Sivan 01 February 2013 (has links)
Solution deposition of thin film photovoltaic materials leads to large variations in the morphological and chemical compositions of the film. In order to improve device functionality, it is important to understand how morphology and chemical composition affects charge generation, separation, and collection. This PhD work will first study bulk methods in order to characterize materials in solution and films. The results are then correlated with microscopy studies examining morphology. Other methods used in this PhD work will directly couple spectra and microscopy. Microscopic regions of such films and devices can be illuminated using scanning confocal microscopy or near-field scanning optical microscopy (NSOM), which allows for one to directly probe regions of the film at or below the optical diffraction limit. By scanning the sample over a fixed laser spot we can simultaneously create image maps of the topographical, electrical and optical properties. This technique, known as laser beam induced current (LBIC) allows one to directly probe a local area of a device with 100-300nm resolution. Along with bulk device efficiency studies, near field and confocal data of inorganic and organic materials are investigated. These include devices fabricated with a blend of P3HT (poly[3-hexylthiophene]) and perylene diimide derivatives, and Cu(InxGa1-x)Se2 [CIGS] nanoparticle devices. Finally, we use a new device architecture, a lateral organic photovoltaic (LOPV) in order to spatially resolve transport in functional organic devices. / text
2

Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors

Hestand, Nicholas James January 2017 (has links)
The field of organic electronics has received considerable attention over the past several years due to the promise of novel electronic materials that are cheap, flexible and light weight. While some devices based on organic materials have already emerged on the market (e.g. organic light emitting diodes), a deeper understanding of the excited states within the condensed phase is necessary both to improve current commercial products and to develop new materials for applications that are currently in the commercial pipeline (e.g. organic photovoltaics, wearable displays, and field effect transistors). To this end, a model for pi-conjugated molecular aggregates and crystals is developed and analyzed. The model considers two types of electronic excitations, namely Frenkel and charge-transfer excitons, both of which play a prominent role in determining the nature of the excited states within tightly-packed organic systems. The former consist of an electron-hole pair bound to the same molecule while in the later the electron and hole are located on different molecules. The model also considers the important nuclear reorganization that occurs when the system switches between electronic states. This is achieved using a Holstein-style Hamiltonian that includes linear vibronic coupling of the electronic states to the nuclear motion associated with the high frequency vinyl-stretching and ring-breathing modes. Analysis of the model reveals spectroscopic signatures of charge-transfer mediated J- and H-aggregation in systems where the photophysical properties are determined primarily by charge-transfer interactions. Importantly, such signatures are found to be sensitive to the relative phase of the intermolecular electron and hole transfer integrals, and the relative energy of the Frenkel and charge-transfer states. When the charge-transfer integrals are in phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits J-aggregate characteristics including a positive band curvature, a red shifted main absorption peak, and an increase in the ratio of the first two vibronic peaks relative to the monomer. On the other hand, when the charge-transfer integrals are out of phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits H-aggregate characteristics including a negative band curvature, a blue shifted main absorption peak, and a decrease in the ratio of the first two vibronic peaks relative to the monomer. Notably, these signatures are consistent with those exhibited by Coulombically coupled J- and H-aggregates. Additional signatures of charge-transfer J- and H-aggregation are also discovered, the most notable of which is the appearance of a second absorption band when the charge-transfer integrals are in phase and the charge-transfer and Frenkel excitons are near resonance. In such instances, the peak-to-peak spacing is found to be proportional to the sum of the electron and hole transfer integrals. Further analysis of the charge-transfer interactions within the context of an effective Frenkel exciton coupling reveals that the charge-transfer interactions interfere directly with the intermolecular Coulombic coupling. The interference can be either constructive or destructive resulting in either enhanced or suppressed J- or H- aggregate behavior relative to what is expected based on Coulombic coupling alone. Such interferences result in four new aggregate types, namely HH-, HJ-, JH-, and JJ-aggregates, where the first letter indicates the nature of the Coulombic coupling and the second indicates the nature of the charge-transfer coupling. Vibronic signatures of such aggregates are developed and provide a means by which to rapidly screen materials for certain electronic characteristics. Notably, a large total (Coulombic plus charge-transfer) exciton coupling is associated with an absorption spectrum in which the ratio of the first two vibronic peaks deviates significantly from that of the unaggregated monomer. Hence, strongly coupled, high exciton mobility aggregates can be readily distinguished from low mobility aggregates by the ratio of their first two vibronic peaks. Analysis of the spatial dependence of the intermolecular interactions reveals that all four aggregate types (HH-, HJ-, JH-, JJ-) can be achieved by enforcing the appropriate crystalline packing arrangement. Such tunability is possible due of the different length scales over which the natures of the two coupling sources interconvert from J-like to H-like; whereas the nature of the Coulombic coupling is known to be sensitive to displacements on the order of half the molecular length, the nature of the charge-transfer mediated exciton coupling is sensitive to geometric displacements of approximately a carbon-carbon bond length. It is proposed that such sensitivity should allow for fine tuning of the total excitonic coupling via modifications in the packing structure, as determined, for example, by the side chains. Several examples of the different aggregate types are provided throughout this dissertation as the model is used to probe the excited state character of several relevant conjugated organic systems. Such examples include pentacene and 7,8,15,16-tetraazaterrylene (TAT) along with several derivatives from the perylene family. / Chemistry

Page generated in 0.0312 seconds