Spelling suggestions: "subject:"arganic light emitting diodes"" "subject:"0rganic light emitting diodes""
1 |
Electroluminescent dendrimersFrampton, Michael John January 2002 (has links)
No description available.
|
2 |
Design of High Performance Organic Light Emitting DiodesWang, Zhibin 07 January 2013 (has links)
Organic light emitting diodes (OLEDs) are being commercialized in display applications, and will be potentially in lighting applications in the near future. This thesis is about the design of high performance OLEDs, which includes both the electrical and optical design of OLEDs. In particular, the following work is included in this thesis: i) Energy level alignment and charge injection at metal/organic interfaces have been systematically studied. ii) Transition metal oxide anodes have been developed to inject sufficient holes into the OLEDs due to their high work function. The oxide anodes have also been used to systematically study the transport properties in organic semiconductors. iii) Highly simplified OLED devices with unprecedentedly high efficiency have been realized using both fluorescent and phosphorescent emitters. The high performance was enabled by using a high work function metal oxide anode and a hole transport material with very a deep highest occupied molecular orbital (HOMO). iv) An optical model has been developed to describe the optical electric field across the OLED device. By using the model, a high performance flexible OLED using metal anode was designed and realized.
|
3 |
The Study of Highly Efficient Single Emitting Layer White Light Organic Light-Emitting Diodes on Tandem StructureLien, Kuan-Yi 27 July 2009 (has links)
We report that the tandem OLEDs made of two electroluminescent (EL) units connected by the interconnecting layer. If It is compared wih the traditional OLEDs. The tandem OLEDs have higher efficiency and well lifetime. We not only used the single emitting layer WOLEDs as EL unit but also studied the effect of the interconnecting layer for whole device.
First, we designed the interconnecting layer with Alq3¡GLi (1%) (n-doping layer)/MoO3 (p-doping layer), and we optimized the thickness of the interconnecting layer by using green unit cell (Alq3 for EML),
ITO/NPB(65 nm)/Alq3(30 nm)/Alq3(30 nm)/Alq3(x nm)¡GLi (1%)/MoO3(y nm)/NPB(65 nm)/Alq3(30 nm)/Alq3(30 nm)/LiF(0.8 nm)/Al(200 nm)
x=10¡A20¡A30¡A40¡Fy=1¡A3¡A5¡A7¡A10
We found that the best thickness of Alq3¡GLi (1%) and MoO3 are 20 nm and 5 nm. In our study, we concluded that there are the best thickness to each interconnecting layer, and it keeps the charge balance between two units.
Finally, we used our single emitting layer WOLEDs as unit cell, which used 1,3,5-Tri(1-pyrenyl)benzene (TPB3) as the host, and 4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as the guest, unit cell was
ITO(130 nm)/NPB(65 nm)/ TPB3(30 nm)¡GDCJTB(0.05%)/ Alq3(30 nm)/LiF(8 nm)/Al(200 nm)
Whole device was
ITO(130 nm)/NPB(65 nm)/ TPB3(30 nm)¡GDCJTB(0.05%)/ Alq3(30 nm)/Alq3(20 nm)¡GLi(1%)/MoO3(5 nm)/NPB(65 nm)/TPB3(30 nm)¡GDCJTB(0.05%)/Alq3(30 nm)/
LiF(0.8 nm)/Al(200 nm)
We got almost three times luminance from the tandem one at the same current density (670 cd/m2 for 2360 cd/m2 at 20 mA/cm2) and efficiency as high as 9.7 cd/A ( at 24 mA/cm2). It¡¦s a excellent contribution for device lifetime. But the operation voltage and the power efficiency didn¡¦t reach to our expectancy.
In order to improve the disadvantage, we changed the concentration of n-doping layer Alq3¡GLi (z %)¡Az=1%¡A2%¡A3%. It was actually improved the turn-on voltage from 10 V to 7 V. But the luminescent characteristics also degenerated. Although we enhanced the charge mobility of the n-doping layer, it also caused the degeneration of luminescent characteristics because of the unbalance of the charge transference.We got the efficiency 8.1 cd/A ( at 14 V) and almost two times luminance from the tandem one at the same current density (670 cd/m2 for 1760 cd/m2 at 20 mA/cm2), most close to the white area of CIE coordinates was (0.30 , 0.37) at 15 V. Its range of CIE coordinates was (0.35 , 0.46)~(0.28 , 0.33) at 8 V~20 V. We have already developed the tandem WOLEDs using single white emitting layer as EL units that have never be reported. It not only maintained the advantages of the tandem structure, but also had excellent stability of luminescent characteristics at wide range operation voltage. We reached our goal to improve the WOLEDs and make it more suitable for commercial applications, especially for the development of light sources.
|
4 |
Synthesis and photoluminescent properties of linear and starburst compounds based on benzimidazole, 2-(2'-pyridyl)benzimidazole and 2,2'-dipyridylamineWhite, Wade M. 02 August 2007 (has links)
The objective of this thesis was to explore the chemistry of series of linear and star shaped compounds based on benzimidazolyl, 2-(2’-pyridyl)benzimidazolyl, and 2,2’-dipyridylamino functional groups. These groups all possess Lewis base sites suitable for metal coordination, and are all known fluorophores.
The first compounds to be presented are the homo-substituted benzimidazolyl derivatives. Compounds 2.1-2.5 have been fully characterized and are all luminescent with emission energies in the UV region. While coordination complexes with these ligands have not been isolated, the effect of metal ion complexation on ligand luminescence has been explored via metal ion titration experiments. Furthermore, these compounds all have electron affinities greater than -3.0 eV and large optical bandgaps that range between 3.55 and 3.95 eV. These compounds also have high thermal and morphological stability. In light of this, compound 2.3 was selected as a representative example, and further characterized as an electron transport/hole blocking material for OLED applications. It has demonstrated a performance comparable to that of the well known electron transport material Alq3 (q = 8-hydroxyquinolinate).
The second class of compounds, 3.2 and 3.3, represent a pair of hetero-substituted ligands with two different binding sites available for coordination chemistry. A copper (I) complex of 3.3 has been isolated and exhibits orange phosphorescence at room temperature and at 77 K. Furthermore, a series of metal titration experiments have been performed on 3.3 and 3.4, and have demonstrated the preference of different metal ions for either the 2,2’-dipyridylamino site, or the 2-(2’-pyridyl)benzimidazolyl binding site. The details of these explorations will be presented in the subsequent chapters. / Thesis (Master, Chemistry) -- Queen's University, 2007-07-31 12:17:06.011
|
5 |
Design of High Performance Organic Light Emitting DiodesWang, Zhibin 07 January 2013 (has links)
Organic light emitting diodes (OLEDs) are being commercialized in display applications, and will be potentially in lighting applications in the near future. This thesis is about the design of high performance OLEDs, which includes both the electrical and optical design of OLEDs. In particular, the following work is included in this thesis: i) Energy level alignment and charge injection at metal/organic interfaces have been systematically studied. ii) Transition metal oxide anodes have been developed to inject sufficient holes into the OLEDs due to their high work function. The oxide anodes have also been used to systematically study the transport properties in organic semiconductors. iii) Highly simplified OLED devices with unprecedentedly high efficiency have been realized using both fluorescent and phosphorescent emitters. The high performance was enabled by using a high work function metal oxide anode and a hole transport material with very a deep highest occupied molecular orbital (HOMO). iv) An optical model has been developed to describe the optical electric field across the OLED device. By using the model, a high performance flexible OLED using metal anode was designed and realized.
|
6 |
Development of 8-Hydroxyquinoline Metal Based Organic Light-emitting DiodesFeng, Xiaodong 31 July 2008 (has links)
Because of its potential application for flat panel displays, solid-state lighting and 1.5 µm emitter for fiber optical communications, organic light-emitting diodes (OLEDs) have been intensively researched. One of the major problems with current OLED technology relates to inefficient electron injection at the cathode interface, which causes high driving voltage and poor device stability. Making a low resistance cathode contact for electron injection is critical to device performance. This work mainly focuses on cathode interface design and engineering.
The Ohmic contact using a structure of C60/LiF/Al has been developed in electron only devices. It is found that application of the C60/LiF/Al contact to Alq based OLEDs leads to a dramatic reduction in driving voltages, a significant improvement in power efficiency, and a much slower aging process.
A new cathode structure based on metal-organic-metal (MOM) tri-layer films has been developed. It is found that MOM cathodes reduce reflection by deconstructive optical interference from two metal films. The absolute reflectance from the MOM tri-layer films can be reduced to as low as 7% in the visible light spectrum. In actual working devices, the reflectance can be reduced from ~80% to ~ 20%. MOM cathodes provide a potential low-cost solution for high contrast full-color OLED displays.
Low voltage Erq based OLEDs at 1.5 µm emission have been developed. The Erq/Ag cathode interface has been found to be efficient for electron injection. Dramatic improvement in driving voltage and power efficiency has been realized by implementing Bphen and C60 into Erq devices as an electron transport layer. Integration of Erq devices on Si wafers has also been demonstrated.
|
7 |
Electrode/Organic Interfaces in Organic OptoelectronicsHelander, Michael G. 13 December 2012 (has links)
Organic semiconductors have the advantage over traditional inorganic semiconductors, such as Si or GaAs, in that they do not require perfect single crystal films to operate in real devices. Complicated multi-layer structures with nanometer scale thicknesses can thus be easily fabricated from organic materials using low-cost roll-to-roll manufacturing techniques. However, the discrete nature of organic semiconductors also implies that they typically contain almost no intrinsic charge carriers (i.e., electrons or holes), and thus act as insulators until electrical charges are injected into them. In electrical device applications this means that all of the holes and electrons within a device must be injected from the anode and cathode respectively. As a result, device stability, performance, and lifetime are greatly influenced by the interface between the organic materials and the electrode contacts. Despite the fundamental importance of the electrode/organic contacts, much of the basic physical understanding of these interfaces remains unclear. As a result, the current design of state-of-the-art organic optoelectronic devices tends to be based on trial and error experimentation, resulting in overly complicated structures that are less than optimal.
In the present thesis, various electrode/organic interfaces relevant to device applications are studied using a variety of different techniques, including photoelectron spectroscopy and the
iii
temperature dependent current-voltage characteristics of single carrier devices. The fundamental understanding gleaned from these studies has been used to develop new strategies for controlling the energy-level alignment at electrode/organic interfaces. A universal method for tuning the work function of electrode materials using a halogenated organic solvent and UV light has been developed. Application of this technique in organic light emitting diodes enabled the first highly simplified two-layer device with a state-of-the-art record breaking efficiency.
|
8 |
Luminance Characteristics of 1,3,5-Tris(1-pyrenyl)benzene and the Application on Organic Light-emitting DevicesCheng, Chun-tai 12 August 2010 (has links)
We have developed high-efficiency blue organic light-emitting devices incorporate 1,3,5-Tri(1-pyrenyl)benzene(TPB3) as emitting layer and 4,7-diphenyl-1,10-phenanthroline(BPhen) as the electron transporting layer, which has a large Highest Occupied Molecular Orbital energy level and has good electron mobility. A device having the configuration : ITO(140 nm)/NPB(65 nm)/(TPB3 40nm)/BPhen(30 nm)/LiF(0.8 nm)/Al(200 nm) exhibited a maximum luminance at 9.5V of 29940 cd/m2, The maximum current and power efficiencies were 3.85 cd/A and 2.38 lm/W, respectively. The current and power efficiencies were greater than 3cd/A and 1.1 lm/W respectively, Over a large range of potentials (3.5~10.0V) with good Commission Internationale de l¡¦Eclairage (CIE) coordinates of (0.17, 0.22). These results indicate that TPB3 is good blue-emitting material for OLED applications.
The photophysical and chemical properties of TPB3 have also been studied in this research.
|
9 |
Study of high performance organic light emitting deviceChen, Peng-Yu 22 May 2011 (has links)
The high performance organic light-emitting diodes (OLEDs) have been studied. First, we have fabricated a WOLED with AlF3 and m-MTDATA as a hybrid buffer layer. Results indicate that the turn-on voltage can be reduced to 3.1V, and the luminous efficiency can be improved to 14.7 cd/A when a hybrid buffer layer was used. Since the turn-on voltage decreases and the efficiency increases, the power consumption as well as lifespan are then improved. Moreover, the luminous efficiency of the hybrid buffer layer devices also immunes to drive voltage variations.
Second, we studied the properties of transportation in OLEDs. The study presented the device of a WOLED with a combination of a graded hole transport layer (GH) structure and a gradually doped emissive layer (GE) structure as a double graded (DG) structure. The DG structure: ITO/MTDATA(15 nm/NPB(15 nm)/NPB:25% BAlq (15 nm)/NPB : 50% BAlq (15 nm)/BAlq:0.5% Rubrene (10 nm)/ BAlq : 1% Rubrene (10nm) /BAlq:1.5%Rubrene (10 nm) / Alq3 (20 nm)/ LiF (0.5 nm)/Al (200 nm) is beneficial for improving both electrical and optical performances. The luminous efficiency of the DG device is 11.8cd/A, which is larger than that of 7.9cd/A with the HJ device. This improvement is attributed to the discrete interface between hole transport layer and emissive layer can be eliminated, surplus holes can be suppressed, electron-hole pairs can obtain optimal transportation and recombination in the emissive layer, and quenching effects can be significantly suppressed. Moreover, the spectra were almost not changed with an increasing drive current. As the efficiency was improved, it is expected that the power consumption can be reduced as well.
Third, high efficiency and brightness p-i-n OLEDs with a CsI-doped Alq3 layer as a n-ETL has been studied. The p-i-n WOLED with a 15 % CsI-doped Alq3 layer exhibits a luminous efficiency of 5.75 cd/A at a driving current of 20mA/cm2 as well as a maximum power efficiency of 4.67lm/W. This improved performance is attributed to the increased electron carriers of the n-ETL and the balance of electrons and holes in the recombination zone. The X-ray photoelectron spectroscopy (XPS) have shown that doping of CsI caused chemical reaction, attributing to the increase of carriers.
Finally, we focus on the improvement of contrast ration (CR) of OLEDs. We successfully fabricated a conductive organic-metal light-absorbing layer with a high CR and low reflectance for use as a black cathode in an OLED. The black cathode that was fabricated using vacuum deposition has the advantages of low cost and simple fabrication. Moreover, the J-V characteristic of the black cathode device is almost identical to that of a conventional device. Additionally, the reflectance can be reduced from 66.2% to 11.3% and a small reflectance variation around 3.3% over the visible spectrum is appealed. At an ambient illumination of 250 lx, the CR can be increased from 4.2 to 10.8 at a brightness of 250 cd/m2.
|
10 |
High-performance single-unit and stacked inverted top-emitting electrophosphorescent organic light-emitting diodesKnauer, Keith Anthony 08 June 2015 (has links)
This thesis reports on the design, fabrication, and testing of state-of-the-art, high-performance inverted top-emitting organic light-emitting diodes (OLEDs). The vast majority of research reports focuses on a device architecture referred to as a conventional OLED which has its anode on the bottom of the device and its cathode on the top. Moreover, most conventional OLEDs are bottom-emitting such that light exits the structure through both a semitransparent bottom electrode of indium-tin oxide and a glass substrate. The particular device architecture developed in this thesis is one in which the devices are inverted (i.e. their cathode is on the bottom as opposed to on top) and top-emitting. Despite the advantages that inverted top-emitting OLEDs possess over conventional bottom-emitting OLEDs, their development has been relatively slow. This is because inverted OLEDs have traditionally been hampered by the difficulty of injecting electrons effectively into the device.
In this work, a novel method of injecting electrons from bottom cathodes into inverted OLEDs is discovered. In several previous reports, bottom Al/LiF cathodes had been used with the electron-transport material Alq3 to produce inverted OLEDs, but the resulting inverted OLEDs exhibited inferior performance to conventional OLEDs with top cathodes of Al/LiF. A new route for the development of highly efficient inverted OLEDs is shown through the use of electron-transport materials with high electron mobility values and large electron affinities.
After systematic device optimization, inverted top-emitting OLEDs are demonstrated that currently define the state-of-the-art in terms of device efficiency. Optimized green and blue inverted top-emitting OLEDs are demonstrated that have a current efficacies of 92.5 cd/A and 32.0 cd/A, respectively, at luminance values exceeding 1,000 cd/m2. Finally, this discovery has enabled the development of the first stacked inverted top-emitting OLEDs ever made, combining all of the advantages offered by an inverted architecture, a top-emissive design, and a stacked structure. These OLEDs have a current efficacy of 200 cd/A at a luminance of 1011 cd/m2, attaining a maximum current efficacy of 205 cd/A at luminance of 103 cd/m2.
|
Page generated in 0.1206 seconds