1 |
Controle H-infinito não linear e a equação de Hamilton Jacobi-Isaacs. / Nonlinear H-infinity control and the Hamilton-Jacobi-Isaacs equation.Ferreira, Henrique Cezar 10 December 2008 (has links)
O objetivo desta tese é investigar aspectos práticos que facilitem a aplicação da teoria de controle H1 não linear em projetos de sistemas de controle. A primeira contribuição deste trabalho é a proposta do uso de funções ponderação com dinâmica no projeto de controladores H1 não lineares. Essas funções são usadas no projeto de controladores H1 lineares para rejeição de perturbações, ruídos, atenuação de erro de rastreamento, dentre outras especificações. O maior obstáculo para aplicação prática da teoria de controle H1 não linear é a dificuldade para resolver simultaneamente as duas equações de Hamilton-Jacobi-Isaacs relacionadas ao problema de realimentação de estados e injeção da saída. Não há métodos sistematicos para resolver essas duas equações diferenciais parciais não lineares, equivalentes µas equações de Riccati da teoria de controle H1 linear. A segunda contribuição desta tese é um método para obter a injeção da saída transformando a equação de Hamilton-Jacobi-Isaacs em uma sequencia de equações diferenciais parciais lineares, que são resolvidas usando o método de Galerkin. Controladores H1 não lineares para um sistema de levitação magnética são obtidos usando o método clássico de expansão em série de Taylor e o método de proposto para comparação. / The purpose of this thesis is to investigate practical aspects to facilitate the ap- plication of nonlinear H1 theory in control systems design. Firstly, it is shown that dynamic weighting functions can be used to improve the performance and robustness of the nonlinear H1 controller such as in the design of H1 controllers for linear plants. The biggest bottleneck to the practical applications of nonlinear H1 control theory has been the di±culty in solving the Hamilton-Jacobi-Isaacs equations associated with the design of a state feedback and an output injection gain. There is no systematic numerical approach for solving this ¯rst order, nonlinear partial di®erential equations, which reduces to Riccati equations in the linear context. In this work, successive ap- proximation and Galerkin approximation methods are combined to derive an algorithm that produces an output injection gain. Design of nonlinear H1 controllers obtained by the well established Taylor approximation and by the proposed Galerkin approxi- mation method applied to a magnetic levitation system are presented for comparison purposes.
|
2 |
Controle H-infinito não linear e a equação de Hamilton Jacobi-Isaacs. / Nonlinear H-infinity control and the Hamilton-Jacobi-Isaacs equation.Henrique Cezar Ferreira 10 December 2008 (has links)
O objetivo desta tese é investigar aspectos práticos que facilitem a aplicação da teoria de controle H1 não linear em projetos de sistemas de controle. A primeira contribuição deste trabalho é a proposta do uso de funções ponderação com dinâmica no projeto de controladores H1 não lineares. Essas funções são usadas no projeto de controladores H1 lineares para rejeição de perturbações, ruídos, atenuação de erro de rastreamento, dentre outras especificações. O maior obstáculo para aplicação prática da teoria de controle H1 não linear é a dificuldade para resolver simultaneamente as duas equações de Hamilton-Jacobi-Isaacs relacionadas ao problema de realimentação de estados e injeção da saída. Não há métodos sistematicos para resolver essas duas equações diferenciais parciais não lineares, equivalentes µas equações de Riccati da teoria de controle H1 linear. A segunda contribuição desta tese é um método para obter a injeção da saída transformando a equação de Hamilton-Jacobi-Isaacs em uma sequencia de equações diferenciais parciais lineares, que são resolvidas usando o método de Galerkin. Controladores H1 não lineares para um sistema de levitação magnética são obtidos usando o método clássico de expansão em série de Taylor e o método de proposto para comparação. / The purpose of this thesis is to investigate practical aspects to facilitate the ap- plication of nonlinear H1 theory in control systems design. Firstly, it is shown that dynamic weighting functions can be used to improve the performance and robustness of the nonlinear H1 controller such as in the design of H1 controllers for linear plants. The biggest bottleneck to the practical applications of nonlinear H1 control theory has been the di±culty in solving the Hamilton-Jacobi-Isaacs equations associated with the design of a state feedback and an output injection gain. There is no systematic numerical approach for solving this ¯rst order, nonlinear partial di®erential equations, which reduces to Riccati equations in the linear context. In this work, successive ap- proximation and Galerkin approximation methods are combined to derive an algorithm that produces an output injection gain. Design of nonlinear H1 controllers obtained by the well established Taylor approximation and by the proposed Galerkin approxi- mation method applied to a magnetic levitation system are presented for comparison purposes.
|
3 |
Commande linéaire à paramètres variants des robots manipulateurs flexibles / Linear Parameter Varying (LPV) control of flexible robotic manipulatorsHalalchi, Houssem 13 September 2012 (has links)
Les robots flexibles sont de plus en plus utilisés dans les applications pratiques. Ces robots sont caractérisés par une conception mécanique légère, réduisant ainsi leur encombrement, leur consommation d’énergie et améliorant leur sécurité. Cependant, la présence de vibrations transitoires rend difficile un contrôle précis de la trajectoire de ces systèmes. Cette thèse est précisément consacrée à l’asservissement en position des manipulateurs flexibles dans les espaces articulaire et opérationnel. Des méthodes de commande avancées, basées sur des outils de la commande robuste et de l’optimisation convexe, ont été proposées. Ces méthodes font en particulier appel à la théorie des systèmes linéaires à paramètres variants (LPV) et aux inégalités matricielles linéaires (LMI). En comparaison avec des lois de commande non-linéaires disponibles dans la littérature, les lois de commande LPV proposées permettent de considérerdes contraintes de performance et de robustesse de manière simple et systématique. L’accent est porté dans notre travail sur la gestion appropriée de la dépendance paramétrique du modèle LPV, en particulier les dépendances polynomiale et rationnelle. Des simulations numériques effectuées dans des conditions réalistes, ont permis d’observer une meilleure robustesse de la commande LPV par rapport à la commande non-linéaire par inversion de modèle face aux bruits de mesure, aux excitations de haute fréquence et aux incertitudes de modèle. / Flexible robots are becoming more and more common in practical applications. This type of robots is characterized by the use of lightweight materials, which allows reducing their size, their power consumption and improves their safety. However, an accurate trajectory tracking of these systems is difficult to achieve because of the transient vibrations they undergo. This PhD thesis work is particularly devoted to the position control of flexible robotic manipulators at the joint and end-effector levels. Advanced control methods, based on some tools of the robust control theory and convex optimization, have been proposed. These methods are based on the theory of Linear Parameter Varying (LPV) systems and Linear Matrix Inequalities (LMI). Compared to some nonlinear control laws available in the literature that involve model inversion, theproposed LPV control laws make it possible to consider performance and robustness constraints in a simple and systematic manner. Our work particularly emphasizes on the appropriate management of the parametric dependence of the LPV model, especially the polynomial and rational dependences. Numerical simulations carried out in realistic operating conditions have shown a better robustness of the LPV control compared to the inversion-based nonlinear control withrespect to measurement noise, high frequency inputs and model uncertainties.
|
Page generated in 0.0316 seconds