Spelling suggestions: "subject:"H2S removal"" "subject:"H2S emoval""
1 |
Utilization Of Waste Materials From Iron-steel And Zinc Industries For Sorption Of Hydrogen Sulfide At High ConcentrationsHarmanci, Ebru 01 July 2004 (has links) (PDF)
The slags from iron-steel and zinc industries are rich in metal oxide contents like FeO, MnO, CaO. However, these slags are not used extensively, except some usage in the cement industry. These slags can be used in removing H2S from waste gases from different industrial sources. The purpose of this research is to study the effect of initial concentration of H2S on the capacity and sorbent efficiency of waste materials from iron-steel and zinc industries.
Experiments were conducted in a 25 mm-quartz reactor with simulated gases containing H2S as reactive gas. Breakthrough curves for sulfidation reactions were obtained for 3000 ppmv, 4000 ppmv and 5000 ppmv initial H2S concentrations at the reaction temperature range of 500° / C&ndash / 700° / C.
According to the results obtained from the experiments, the H2S removal capacity of both slags increased with increasing reaction temperature, however, the H2S removal capacity of the slags decreases as the initial H2S concentration increases.
Cyclic sulfidation and regeneration tests were applied to both steel and zinc slags in order to determine the regenerability of the slags. In cyclic tests, zinc slag gave better results than steel slag.
A &ldquo / Deactivation Model&rdquo / was used in order to fit the breakthrough curves obtained experimentally to the breakthrough curves predicted from the deactivation model. A very good fit was obtained for both steel and zinc slags.
Zinc slag was shown to be more suitable for gas cleanup than steel slag taking into account its high H2S removal efficiency, regenerability and low cost (almost free of charge).
|
2 |
Experimental Analysis On The Effects Of Superficial Liquid And Gas Velocities In The Removal Of Hydrogen Sulfide From A Brine/oil MixtureLee, Joshua 01 January 2010 (has links)
Hydrogen Sulfide (H2S) is a harmful gas produced during petroleum extraction that leads to corrosion of drilling tools and pipelines. However, a H2S-scavenging liquid compound, when added to pipelines, interacts with liquids that absorbed H2S to create a non-corrosive bi-product. The interaction is associated with the mixing of gases and liquids. This thesis is a study on the effect of superficial gas and liquid velocities on the scavenger's efficiency. This study employs two experimental setups designed to simulate the mixing of gases and liquids within pipelines. A high pressure closed loop was designed and fabricated to determine the influence of gas, liquid velocities and liquid volume on the scavenger's efficiency. All experiments were conducted in this high pressure loop with a thousand feet of coiled tubing to simulate the horizontal section of the pipeline that runs along the ocean floor from the reservoir. This provided practical understanding to petroleum companies to make a better forecast of how the scavenger used in eliminating the H2S, is affected in the process of transporting the liquids and gases from the reservoir to the surface. For an adequate analysis, experiments on four liquid and four gas velocities ranging from 0.2m/s to 0.5m/s and 0.4m/s to 1.1m/s respectively were conducted. Results in this study indicated that increases in superficial gas velocity at low superficial liquid velocity decreases the scavenger efficiency while the opposite is seen at high superficial liquid velocity. In addition, the H2S mass absorption was not a function of liquid volume as would be seen in static reservoirs but more of a function of superficial liquid and gas velocities. With the scavenger interacting with the liquid absorbed H2S, it was expected that the efficiency would increase with the increase in volume but in this study this was not the case. The second experiment is a flow visualization loop which was designed to understand the flow regimes at high pressures. This was done by constructing four 25ft section hoses together with four foot long breaks for visualization. This provided a more fundamental study of the fluid's behavior inside the pipelines allowing for the creation of appropriate flow regime maps in air-water flow. A hundred experiments for two different pressures were conducted at the 25ft location. At high pressures, the flow regime map appeared to shift the transition zones.
|
3 |
Removal Of Hydrogen Sulfide By Regenerable Metal Oxide SorbentsKarayilan, Dilek 01 June 2004 (has links) (PDF)
ABSTRACT
REMOVAL OF HYDROGEN SULFIDE
BY REGENERABLE METAL OXIDE SORBENTS
Karayilan, Dilek
M.S., Department of Chemical Engineering
Supervisor : Prof. Dr. Timur Dogu
Co-Supervisor: Prof. Dr. Gü / lSen Dogu
June 2004, 166 pages
High-temperature desulfurization of coal-derived fuel gases is an essential process in advanced power generation technologies. It may be accomplished by using metal oxide sorbents. Among the sorbents investigated CuO sorbent has received considerable attention. However, CuO in uncombined form is readily reduced to copper by the H2 and CO contained in fuel gases which lowers the desulfurization efficiency. To improve the performance of CuO-based sorbents, they have been combined with other metal oxides, forming metal oxide sorbents.
Sulfidation experiments were carried out at 627 oC using a gas mixture composed of 1 % H2S and 10 % H2 in helium. Sorbent regeneration was carried out in the same reactor on sulfided samples at 700 oC using 6 % O2 in N2. Total flow rate of gas mixture was kept at 100 ml/min in most of the experiments.
In this study, Cu-Mn-O, Cu-Mn-V-O and Cu-V-O sorbents were developed by using complexation method. Performance of prepared sorbents were investigated in a fixed-bed quartz microreactor over six sulfidation/regeneration cycles. During six cycles, sulfur retention capacity of Cu-Mn-O decreased slightly from 0.152 to 0.128 (g S)/(g of Sorbent) while some decrease from 0.110 to 0.054 (g S)/(g of Sorbent) was observed with Cu-Mn-V-O. Cu-V-O showed a very good performance in the first sulfidation and excessive thermal sintering in the first regeneration prevented further testing. Sulfur retention capacity of Cu-V-O was calculated as 0.123 (g S)/(g of Sorbent) at the end of the first sulfidation. In addition, SO2 formation in sulfidation experiments was observed only with Cu-V-O sorbent.
|
Page generated in 0.0342 seconds