• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of medicinal herbs on contraction rate of cultured cardiomyocyte. Possible mechanisms involved in the chronotropic effects of hawthorn and berberine in neonatal murine cardiomyocyte / Possible mechanisms involved in the chronotropic effects of hawthorn and berberine in neonatal murine cardiomyocyte

Salehi, Satin 29 September 2009 (has links)
Herbs have been used for many centuries in diverse civilizations for the treatment of heart disease. Only a few natural supplements claim to have direct cardiovascular actions including hawthorn (Crataegus spp.) and berberine derived from the Berberidaceae family. Several different studies indicate important cardiovascular effects of hawthorn and berberine. For example, both exert positive inotropic effects and have been used in the treatment of congestive heart failure. Recently, it was shown that hawthorn extract preparations cause negative chronotropic effects in a cultured neonatal murine cardiomyocyte assay independent of beta-adrenergic receptor blockade. The aim of this study was to further characterize the effect of hawthorn extract to decrease the contraction rate of cultured cardiomyocytes. We hypothesized that hawthorn extract may be acting through muscarinic receptors to decrease contraction rate of cardiomyocytes. Atrial and ventricular cardiomyocytes were treated with hawthorn extract in the presence of atropine or himbacine. Changes in the contraction rate of cultured cardiomyocytes revealed that both muscarinic antagonists significantly attenuated the negative chronotropic activity of hawthorn extract. Using quinuclidinyl benzilate, L-[benzylic-4,4'-3H] ([³H]-QNB) as a radioligand antagonist, the effect of a partially purified hawthorn extract fraction to inhibit muscarinic receptor binding was quantified. Hawthorn extract fraction 3 dose-dependently inhibited [³H]-QNB binding to mouse heart membranes. These findings suggest that muscarinic receptors may be involved in the negative chronotropic effect of hawthorn extracts in neonatal murine cardiomyocytes. Berberine exhibits variable positive and negative chronotropic effects in different species. Our first aim was to examine the effect of berberine in a cultured neonatal murine cardiomyocyte assay. Our study demonstrates that berberine has significant negative chronotropic actions on cardiomyocytes which is not an effect of beta-adrenergic receptor blockade. Pertussis toxin (PTX), a Gi/o protein inhibitor, blocked the negative chronotropic activity of berberine. Muscarinic, adenosine, opioid, and α₂ receptors are coupled through a G-protein (Gi/o) to adenylyl cyclase in an inhibitory fashion. Activation of these receptors are primarily responsible for PTX-sensitive negative chronotropic effects in heart. We hypothesized that berberine may be acting through one of these receptor type to decrease contraction rate of cardiomyocytes. For this purpose, we studied the effects of the muscarinic-receptor antagonists, atropine, himbacine, or AF- DX 116 on the negative chronotropic activity of berberine. Muscarinic antagonists completely blocked the effect of berberine on contraction rate of cardiomyocytes, whereas the bradycardic effect of berberine was not inhibited by the opioid, adenosine, or α2 receptor antagonists naloxone, CGS 15943, or phentolamine, respectively. Using [³H]QNB as a radioligand, we demonstrated that berberine bound to muscarinic receptors of adult mouse heart membranes with relatively high affinity. Furthermore, berberine dose-dependently inhibited [³H]QNB binding to muscarinic M2 receptors exogenously expressed in HEK 293 cells. Therefore, the findings of the present study suggest that berberine has muscarinic agonist effects in cultured neonatal murine cardiomyocytes, potentially explaining reported physiological effects of berberine. Cardiac hypertrophy represents the most important factor in the development of congestive heart failure. We investigated the inhibitory effect of berberine on hypertrophy of H9c2 cells. In rat heart-derived H9c2 myoblast cells treated with different hypertrophic agonists such as insulin growth factor II (IGF-II), arginine vasopressin (AVP), phenylephrine, and isoproterenol, protein content and size of cells were significantly increased compared to control group. However, the number of H9c2 cells after treatment with hypertrophic agonists did not differ significantly compared to control. The increases in area of cells and protein content induced by the hypertrophic agonists were inhibited by treatment with berberine in a concentration-dependent manner. Our findings have provided the first scientific evidence that berberine may have an inhibitory effect on hypertrophy of heart-derived cells, and provide a rationale for further studies to evaluate berberine's cardiac activity. / Graduation date: 2010
2

Subcellular effects of pavetamine on rat cardiomyocytes

Ellis, Charlotte Elizabeth 05 January 2011 (has links)
The aim of this study was to investigate the mode of action of pavetamine on rat cardiomyocytes. Pavetamine is the causative agent of gousiekte (“quick-disease”), a disease of ruminants characterized by acute heart failure following ingestion of certain rubiaceous plants. Two in vitro rat cardiomyocyte models were utilized in this study, namely the rat embryonic cardiac cell line, H9c2, and primary neonatal rat cardiomyocytes. Cytotoxicity of pavetamine was evaluated in H9c2 cells using the MTT and LDH release assays. The eventual cell death of H9c2 cells was due to necrosis, with LDH release into the culture medium after exposure to pavetamine for 72 h. Pavetamine did not induce apoptosis, as the typical features of apoptosis were not observed. Electron microscopy was employed to study ultrastructural alterations caused by pavetamine in H9c2 cells. The mitochondria and sarcoplasmic reticula showed abnormalities after 48 h exposure of the cells to pavetamine. Abundant secondary lysosomes with electron dense material were present in treated cells. Numerous vacuoles were also present in treated cells, indicative of autophagy. During this exposure time, the nuclei appeared normal, with no chromatin condensation as would be expected for apoptosis. Abnormalities in the morphology of the nuclei were only evident after 72 h exposure. The nuclei became fragmented and plasma membrane blebbing occurred. The mitochondrial membrane potential was investigated with a fluorescent probe, which demonstrated that pavetamine caused significant hyperpolarization of the mitochondrial membrane, in contrast to the depolarization caused by apoptotic inducers. Pavetamine did not cause opening of the mitochondrial permeability transition pore, because cyclosporine A, which is an inhibitor of the mitochondrial permeability transition pore, did not reduce the cytotoxicity of pavetamine significantly. Fluorescent probes were used to investigate subcellular changes induced by pavetamine in H9c2 cells. The mitochondria and sarcoplasmic reticula showed abnormal features compared to the control cells, which is consistent with the electron microscopy studies. The lysosomes of treated cells were more abundant and enlarged. The activity of cytosolic hexosaminidase was nearly three times higher in the treated cells than in the control cells, which suggested increased lysosomal membrane permeability. The activity of acid phosphatase was also increased in comparison to the control cells. In addition, the organization of the cytoskeletal F-actin of treated cells was severely affected by pavetamine. Rat neonatal cardiomyocytes were labelled with antibodies to detect the three major contractile proteins (titin, actin and myosin) and cytoskeletal proteins (F-actin, desmin and β-tubulin). Cells treated with pavetamine had degraded myosin and titin, with altered morphology of sarcomeric actin. Vacuoles appeared in the β-tubulin network, but the appearance of desmin was normal. F-actin was severely disrupted in cardiomyocytes treated with pavetamine and was degraded or even absent in treated cells. Ultrastructurally, the sarcomeres of rat neonatal cardiomyocytes exposed to pavetamine were disorganized and disengaged from the Z-lines, which can also be observed in the hearts of ruminants that have died of gousiekte. It is concluded that the pathological alteration to the major contractile and cytoskeleton proteins caused by pavetamine could explain the cardiac dysfunction that characterizes gousiekte. F-actin is involved in protein synthesis and therefore can play a role in the inhibition of protein synthesis in the myocardium of ruminants suffering from gousiekte. Apart from inhibition of protein synthesis in the heart, there is also increased degradation of cardiac proteins in an animal with gousiekte. The mitochondrial damage will lead to an energy deficiency and possibly to generation of reactive oxygen species. The sarcoplasmic reticula are involved in protein synthesis and any damage to them will affect protein synthesis, folding and post-translational modifications. This will activate the unfolded protein response (UPR) and sarcoplasmic reticula-associated protein degradation (ERAD). If the oxidizing environment of the sarcoplasmic reticula is disturbed, it will activate the ubiquitin-proteasome pathway (UPP) to clear aggregated and misfolded proteins. Lastly, the mitochondria, sarcoplasmic reticula and F-actin are involved in calcium homeostasis. Any damage to these organelles will have a profound influence on calcium flux in the heart and will further contribute to the contractile dysfunction that characterizes gousiekte. / Thesis (PhD)--University of Pretoria, 2010. / Paraclinical Sciences / unrestricted

Page generated in 0.0815 seconds