• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 8
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 42
  • 14
  • 13
  • 12
  • 11
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Studies Of Electronic, Magnetic And Entanglement Properties Of Correlated Models In Low-Dimensional Systems

Sahoo, Shaon 09 1900 (has links) (PDF)
This thesis consists of six chapters. The first chapter gives an introduction to the field of low-dimensional magnetic and electronic systems and relevant numerical techniques. The recent developments in molecular magnets are highlighted. The numerical techniques are reviewed along with their advantages and disadvantages from the present perspective. Study of entanglement of a system can give a great insight into the system. At the last part of this chapter a general overview is given regarding entanglement, its measures and its significance in studying many-body systems. Chapter 2 deals with the technique that has been developed by us for the full symmetry adaptation of non-relativistic Hamiltonians. It is advantageous both computationally and physically/chemically to exploit both spin and spatial symmetries of a system. It has been a long-standing problem to target a state which has definite total spin and also belongs to a definite irreducible representation of a point group, particularly for non-Abelian point groups. A very general technique is discussed in this chapter which is a hybrid method based on valence-bond basis and the basis of the z-component of the total spin. This technique is not only applicable to a system with arbitrary site spins and belonging to any point group symmetry, it is also quite easy to implement computationally. To demonstrate the power of the method, it is applied to the molecular magnetic system, Cu6Fe8, with cubic symmetry. In chapter 3, the extension of the previous hybrid technique to electronic systems is discussed. The power of the method is illustrated by applying it to a model icosahedral half-filled electronic system. This model spans a huge Hilbert space (dimension 1,778,966) and is in the largest non-Abelian point group. All the eigenstates of the model are obtained using our technique. Chapter 4 deals with the thermodynamic properties of an important class of single-chain magnets (SCMs). This class of SCMs has alternate isotropic spin-1/2 units and anisotropic high spin units with the anisotropy axes being non-collinear. Here anisotropy is assumed to be large and negative, as a result, anisotropic units behave like canted spins at low temperatures; but even then simple Ising-type model does not capture the essential physics of the system due to quantum mechanical nature of the isotropic units. A transfer matrix (TM) method is developed to study statistical behavior of this class of SCMs. For the first time, it is also discussed in detail that how weak inter-chain interactions can be treated by a TM method. The finite size effect is also discussed which becomes important for low temperature dynamics. This technique is applied to a real helical chain magnet, which has been studied experimentally. In the fifth chapter a bipartite entanglement entropy of finite systems is studied using exact diagonalization techniques to examine how the entanglement changes in the presence of long-range interactions. The PariserParrPople model with long-range interactions is used for this purpose and corresponding results are com-pared with those for the Hubbard and Heisenberg models with short-range interactions. This study helps understand why the density matrix renormalization group (DMRG) technique is so successful even in the presence of long-range interactions in the PPP model. It is also investigated if the symmetry properties of a state vector have any significance in relation to its entanglement. Finally, an interesting observation is made on the entanglement profiles of different states, across the full energy spectrum, in comparison with the corresponding profile of the density of states. The entanglement can be localized between two noncomplementary parts of a many-body system by performing local measurements on the rest of the system. This localized entanglement (LE) depends on the chosen basis set of measurement (BSM). In this chapter six, an optimality condition for the LE is derived, which would be helpful in finding optimal values of the LE, besides, can also be of use in studying mixed states of a general bipartite system. A canonical way of localizing entanglement is further discussed, where the BSM is not chosen arbitrarily, rather, is fully determined by the properties of a system. The LE obtained in this way, called the localized entanglement by canonical measurement (LECM), is not only easy to calculate practically, it provides a nice way to define the entanglement length. For spin-1/2 systems, the LECM is shown to be optimal in some important cases. At the end of this chapter, some numerical results are presented for j1 −j2 spin model to demonstrate how the LECM behaves.
42

Durch Lumineszenz nachgewiesene magnetische Resonanz: Aufbau eines Spektrometers und Messungen an den Laserkristallen Al2O3:Cr und Al2O3:Ti / Magnetic resonance detected via luminescence: construction of a spectrometer and measurements of the laser crystals Al2O3:Cr and Al2O3:Ti

Ruza, Egils 15 September 2000 (has links)
Im Rahmen dieser Arbeit wurde eine Meßanordnung zum Nachweis der Elektronen-Spin-Resonanz durch Beobachtung der Lumineszenz aufgebaut. Diese Methode ist unter dem Namen Optisch Detektierte Magnetische Resonanz (ODMR) bekannt. Sie erlaubt es, die Lumineszenzeigenschaften mit der aus der Spin-Resonanz gewonnenen atomistischen Strukturinformation zu verknüpfen. Mit der ODMR-Anlage wurden Untersuchungen an zwei unterschiedlich dotierten Korund-Kristallen, Rubin (Al2O3:Cr) und Saphir (Al2O3:Ti), durchgeführt. Anhand der Literaturdaten für Rubin wurde die neu aufgebaute Anlage getestet und geeicht. Die Messungen an Saphir dienten zur Klärung der bisher kontrovers diskutierten Struktur von blau emittierenden Lumineszenzzentren. Bei einer UV-Anregung entsteht im Saphir neben der schon bekannteninfraroten Ti3+-Emission eine breite blau-grüne Emission, die aus zwei überlappenden Teilbanden besteht. Die eine hat das Maximum bei ca. 410 nm ("blaue Bande") und die andere bei 480 nm ("grüne Bande"). Die Anregung beider Lumineszenzbanden findet bei 250 nm und 270 nm bzw. 270 nm statt. Um diese blau-grüne Lumineszenz zu erklären, sind unterschiedliche Modelle vorgeschlagen worden. So wurde die Lumineszenz F+-Zentren (ein Elektron in einer Sauerstoffleerstelle) oder Ti-Zentren zugeordnet. Im Falle der Ti-Zentren wurden alternativ Kristallfeldübergänge von Ti3+-Ionen und Charge-Transfer-Übergänge von Ti4+-Ionen mit der Lumineszenz in Verbindung gebracht. Die im Rahmen dieser Arbeit durchgeführten ODMR-Messungenergaben als Ursache der blau-grünen Lumineszenz zwei einander ähnliche Triplett-Systeme T1 und T2. Diese konnten durch folgende ESR-Parameter beschrieben werden: T1: gx,y,z=2.00, 1.96, 1.94 (g-Tensor), D=0.306 cm-1 (axialer Anteil der Kristallfeldaufspaltung), E=0.034 cm-1 (orthorhombischer Anteil der Kristallfeldaufspaltung); T2: gx,y,z=1.99, 1.99, 1.99, D=0.342 cm-1, E=0.054 cm-1. Das Zentrum T1 konnte der blauen und T2 der grünen Lumineszenz-Teilbande zugeordnet werden. Da die Lumineszenz-Zentren angeregte Tripletts sind, können Dublett-Systeme wie die F+-Zentren oder Ti3+-Ionenausgeschlossen werden. Dagegen sind die Beobachtungen verträglich mit dem Ti4+-O2--Charge-Transfer-Modell (mit Ti3+-O- im angeregten Zustand). Beide Lumineszenzbanden stammen demzufolge aus der Rekombination des Elektron-Loch-Paares im Ti3+-O--Zentrum des Typs T1 oder T2, das durch den Charge-Transfer-Übergang eines Elektrons vom Sauerstoff zum Ti4+ entsteht. Elektron und Loch koppeln zu einem Triplett-System. Das Loch ist bei beiden Zentren an einem dem Titanion benachbarten Sauerstoffion lokalisiert. Dies wird daraus geschlossen, daß die z-Achse der ESR-Tensoren ungefähr parallel zur Richtung der Al-O-Bindungen im ungestörten Kristallgitter liegt. Für beide Zentren ist das Verhältnis aus axialem undorthorhombischem Kristallfeldparameter |D/E| ungefähr gleich. Dies läßt auf eine ähnliche Struktur der Umgebung schließen, was das Bild unterstützt, daß beide Zentren fast identisch aufgebaut sind. Der axiale Kristallfeldanteil (Parameter D) von T2 ist etwas größer als der von T1. Dies kann durch einen kleineren Abstand von Elektron und Loch, d. h. von Ti3+ und O- erklärt werden, da die Kopplung zwischen den Spins dann stärker sein wird. In ungestörtem Al2O3 weisen drei der sechs einem Al-Ion benachbarten Sauerstoffionen einen kleineren Abstand auf als die anderen drei Ionen. Die drei Sauerstoffionen mit gleichem Abstand bilden jeweils Dreiecke, wobei das mit dem kleineren Abstand eine größere Seitenlänge aufweist. Es besteht nun die Möglichkeit, daß die beiden Zentren T1 und T2 sich lediglich darin unterscheiden, daß das Loch einmal auf einem Ion des kleinen und einmal auf einem des großen Dreiecks eingefangen ist. Wegen der Größe von D wäre T1 dann dem kleinen und T2 dem großen Dreieck zuzuordnen. Auch die beobachteten Hauptachsenrichtungen der ESR-Tensoren sind mit dieser Zuordnung verträglich. Im angeregten Zustand befindet sich das Elektron auf dem Titanion imgleichen Zustand wie das in dem Grundzustand des Ti3+-Ions. Der große Unterschied zwischen den in der ESR des Grundzustands gemessenen g-Werten (gparallel=1.067, gperp<0.1, Kask et al., 1964) und dem hier gewonnenen fast isotropen g-Faktor (g=2) kann durch die sogenannte Auslöschung des Bahndrehimpulses erklärt werden, die bei niedrigsymmetrischem System wie Ti3+-O- auftritt.

Page generated in 0.0145 seconds