• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Data Distribution Management In Large-scale Distributed Environments

Gu, Yunfeng 15 February 2012 (has links)
Data Distribution Management (DDM) deals with two basic problems: how to distribute data generated at the application layer among underlying nodes in a distributed system and how to retrieve data back whenever it is necessary. This thesis explores DDM in two different network environments: peer-to-peer (P2P) overlay networks and cluster-based network environments. DDM in P2P overlay networks is considered a more complete concept of building and maintaining a P2P overlay architecture than a simple data fetching scheme, and is closely related to the more commonly known associative searching or queries. DDM in the cluster-based network environment is one of the important services provided by the simulation middle-ware to support real-time distributed interactive simulations. The only common feature shared by DDM in both environments is that they are all built to provide data indexing service. Because of these fundamental differences, we have designed and developed a novel distributed data structure, Hierarchically Distributed Tree (HD Tree), to support range queries in P2P overlay networks. All the relevant problems of a distributed data structure, including the scalability, self-organizing, fault-tolerance, and load balancing have been studied. Both theoretical analysis and experimental results show that the HD Tree is able to give a complete view of system states when processing multi-dimensional range queries at different levels of selectivity and in various error-prone routing environments. On the other hand, a novel DDM scheme, Adaptive Grid-based DDM scheme, is proposed to improve the DDM performance in the cluster-based network environment. This new DDM scheme evaluates the input size of a simulation based on probability models. The optimum DDM performance is best approached by adapting the simulation running in a mode that is most appropriate to the size of the simulation.
2

Data Distribution Management In Large-scale Distributed Environments

Gu, Yunfeng 15 February 2012 (has links)
Data Distribution Management (DDM) deals with two basic problems: how to distribute data generated at the application layer among underlying nodes in a distributed system and how to retrieve data back whenever it is necessary. This thesis explores DDM in two different network environments: peer-to-peer (P2P) overlay networks and cluster-based network environments. DDM in P2P overlay networks is considered a more complete concept of building and maintaining a P2P overlay architecture than a simple data fetching scheme, and is closely related to the more commonly known associative searching or queries. DDM in the cluster-based network environment is one of the important services provided by the simulation middle-ware to support real-time distributed interactive simulations. The only common feature shared by DDM in both environments is that they are all built to provide data indexing service. Because of these fundamental differences, we have designed and developed a novel distributed data structure, Hierarchically Distributed Tree (HD Tree), to support range queries in P2P overlay networks. All the relevant problems of a distributed data structure, including the scalability, self-organizing, fault-tolerance, and load balancing have been studied. Both theoretical analysis and experimental results show that the HD Tree is able to give a complete view of system states when processing multi-dimensional range queries at different levels of selectivity and in various error-prone routing environments. On the other hand, a novel DDM scheme, Adaptive Grid-based DDM scheme, is proposed to improve the DDM performance in the cluster-based network environment. This new DDM scheme evaluates the input size of a simulation based on probability models. The optimum DDM performance is best approached by adapting the simulation running in a mode that is most appropriate to the size of the simulation.
3

Data Distribution Management In Large-scale Distributed Environments

Gu, Yunfeng 15 February 2012 (has links)
Data Distribution Management (DDM) deals with two basic problems: how to distribute data generated at the application layer among underlying nodes in a distributed system and how to retrieve data back whenever it is necessary. This thesis explores DDM in two different network environments: peer-to-peer (P2P) overlay networks and cluster-based network environments. DDM in P2P overlay networks is considered a more complete concept of building and maintaining a P2P overlay architecture than a simple data fetching scheme, and is closely related to the more commonly known associative searching or queries. DDM in the cluster-based network environment is one of the important services provided by the simulation middle-ware to support real-time distributed interactive simulations. The only common feature shared by DDM in both environments is that they are all built to provide data indexing service. Because of these fundamental differences, we have designed and developed a novel distributed data structure, Hierarchically Distributed Tree (HD Tree), to support range queries in P2P overlay networks. All the relevant problems of a distributed data structure, including the scalability, self-organizing, fault-tolerance, and load balancing have been studied. Both theoretical analysis and experimental results show that the HD Tree is able to give a complete view of system states when processing multi-dimensional range queries at different levels of selectivity and in various error-prone routing environments. On the other hand, a novel DDM scheme, Adaptive Grid-based DDM scheme, is proposed to improve the DDM performance in the cluster-based network environment. This new DDM scheme evaluates the input size of a simulation based on probability models. The optimum DDM performance is best approached by adapting the simulation running in a mode that is most appropriate to the size of the simulation.
4

Data Distribution Management In Large-scale Distributed Environments

Gu, Yunfeng January 2012 (has links)
Data Distribution Management (DDM) deals with two basic problems: how to distribute data generated at the application layer among underlying nodes in a distributed system and how to retrieve data back whenever it is necessary. This thesis explores DDM in two different network environments: peer-to-peer (P2P) overlay networks and cluster-based network environments. DDM in P2P overlay networks is considered a more complete concept of building and maintaining a P2P overlay architecture than a simple data fetching scheme, and is closely related to the more commonly known associative searching or queries. DDM in the cluster-based network environment is one of the important services provided by the simulation middle-ware to support real-time distributed interactive simulations. The only common feature shared by DDM in both environments is that they are all built to provide data indexing service. Because of these fundamental differences, we have designed and developed a novel distributed data structure, Hierarchically Distributed Tree (HD Tree), to support range queries in P2P overlay networks. All the relevant problems of a distributed data structure, including the scalability, self-organizing, fault-tolerance, and load balancing have been studied. Both theoretical analysis and experimental results show that the HD Tree is able to give a complete view of system states when processing multi-dimensional range queries at different levels of selectivity and in various error-prone routing environments. On the other hand, a novel DDM scheme, Adaptive Grid-based DDM scheme, is proposed to improve the DDM performance in the cluster-based network environment. This new DDM scheme evaluates the input size of a simulation based on probability models. The optimum DDM performance is best approached by adapting the simulation running in a mode that is most appropriate to the size of the simulation.

Page generated in 0.0224 seconds