• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 967
  • 408
  • 190
  • 169
  • 101
  • 94
  • 40
  • 40
  • 40
  • 40
  • 40
  • 40
  • 34
  • 20
  • 17
  • Tagged with
  • 2565
  • 626
  • 513
  • 425
  • 405
  • 387
  • 301
  • 297
  • 287
  • 283
  • 263
  • 243
  • 223
  • 194
  • 182
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Návrh vytápění budovy s uplatněním procesu informačního modelování / Design of heating by using process Building Information Modeling (BIM)

Horák, Jiří January 2016 (has links)
This thesis processes heating of the apartment house in Rožnov pod Radhoštěm, Vsetín district. Revit program was used for the design of the heating. Some calculations were made in Revit too. Then the correctness of the calculations was checked. The Revit families were made in this thesis. These families support the calculations and design automation. Then these procedures were applied to the apartment house. It is five floors building with 1012 m2 of built area. Thesis solves design of heating and technical room equipment. The technical room is placed in first floor. Heat supply is solved as central heat supply system. The ventilation is mechanical, equal pressure. Thesis is in – cooperation with the house planner and the air – conditioning system design.
242

Energy efficiency trends in large clusters of residential buildings

Unéus, Viktor January 2020 (has links)
The aim of this thesis work is to analyse the trends in heat use among Borlänge Energis district heating customer over the last 20 years. Several reports show that in general the buildings stock get more and more efficient, both in Sweden and other European countries, but will the same trend be seen among Borlänge Energis customer? Data of delivered heat to 324 customers, both single-family houses and multifamily houses, for the period of 1998-2018 is used in this study. The heating that is assumed for domestic hot water is calculated and the heat used for heating is temperature corrected so the heat needed for a normal year could be calculated. The investigated customers are divided into different groups representing various types of buildings with different building years. From this data it’s possible to see trends in heat usage in kWh/building, and year for various types of buildings over the period. Other studies on how trends for heating usage in buildings have report heating usage in kWh/(m2,year). It wasn’t possible in this work to get data of the size of each building, which means that it’s not possible to compare the result from this study with other studies. However, assuming that the building area have been the same and that no extensions of the buildings have been done during the period, the trend in changed heat use should be the same, unless the result is presented in kWh/m2, year and kWh/building, year. The overall results show that there is a reduction in energy use in the buildings in Borlänge during the period 1998-2018. The decrease in heat use are in the order of 0.3 – 0.4 %/year, with larger decrease in multi-family houses. This is considerably less than the decrease of heat use in the buildings stock of 0.9 – 1.2 %/year reported for the entire building stock in Sweden during approximately the same period.
243

A BASIC UNDERSTANDING OF RAPID MOLD SURFACE HEATING VIA LASER ENERGY

Fox, Charles Daniel 09 July 2012 (has links)
No description available.
244

Climate Impact from Installations of Heating Systems in Buildings : An analysis of underfloor heating and radiator systems from a CO2-perspective

Holmqvist, Anton, Magnusson, Sofia January 2024 (has links)
With the need to reduce greenhouse gas emissions in the building sector, this thesis analyzes two common heating solutions: radiator and underfloor heating. As systems with the same purpose, but with diverse installation components, it was of interest to study the climate impact of different materials. Moreover, the energy performance of the systems was investigated for two different modes of heat supply: with district heating or heat pumps. By coupling the heating systems with modes of heat supply, four models were studied. The thesis aimed at analyzing the climate impact of the models by combining the embodied and operational carbon generated during the life cycle of the heating systems, thus conducting a life cycle assessment. The operational carbon was determined by making an energy analysis in IDA ICE combined with energy carrier emission rates. With an analysis of the material and production stage of the heating systems, the embodied carbon is estimated with the software One Click LCA. The results showed that the embodied carbon had a much smaller influence on the total emissions of the building compared to the operational carbon. It was also concluded that the coupling with a heat pump was more energy efficient than having heat supplied from a district heating network. Regarding the heating systems, the underfloor heating system was slightly more efficient than the radiator heating system when coupled with the heat pump, but required more top-up heating. Throughout the study, several different aspects of the systems were encountered. Changing the district heating supplier resulted in drastic changes in the operational carbon. The electricity mix also heavily influenced the emissions produced by the heat pump. These are factors that vary greatly with the location of the project and one combination of heating and supply systems is far from obvious to be a universal solution. / Med behovet av att minska utsläppen av växthusgaser inom byggsektorn så analyserar detta examensarbete två vanliga värmelösningar: radiatorer och golvvärme. De båda systemen fyller samma syfte, men med olika installationskomponenter, vilket gör det intressant att studera klimatpåverkan av de olika materialen som systemen bygger på. Dessutom undersöktes energiprestandan hos systemen för två olika typer av värmekällor: fjärrvärme eller värmepump. Genom att kombinera värmesystemen med värmekällorna undersöktes fyra olika modeller. Examensarbetet syftade till att analysera modellernas klimatpåverkan genom att kombinera den inbyggda och operativa klimatpåverkan som genererades under värmesystemens livscykel, och följaktligen genomföra en livscykelanalys. De utsläpp som genereras från systemens driftskeden fastställdes genom att göra en energianalys i IDA ICE kombinerat med utsläpp från de olika värmekällorna. Med en analys av material- och produktionsstadiet för värmesystemen så uppskattades den inbyggda klimatpåverkan i programvaran One Click LCA. Resultaten visade att den inbyggda klimatpåverkan hade en mycket mindre effekt på byggnadens totala utsläpp jämfört med den under driftskedet. Det konstaterades också att driva värmesystemet med en värmepump var mer energieffektivt än att få det levererat från ett fjärrvärmenät. Gällande de olika värmesystemen så presterade golvvärmesystemet bättre än radiatorsystemet när det drevs med en värmepump, men det krävdes mer spetsvärme. Under studien stötte man på flera olika variationer av systemens uppbyggnad och funktion, vilket ledde till att val behövde göras för att anpassa till studiens begränsningar. Att byta fjärrvärme distributör resulterade i drastiska skillnader för driftskedets klimatpåverkan. Elmixen påverkade också kraftigt utsläppen som genererades av att driva värmepumpen. Dessa är faktorer som varierar kraftigt beroende på vart byggnaden är placerad och det gick inte att konstatera att ett värmesystem är den universiellt bästa lösningen.
245

Dynamika otopných ploch / Dynamics of heating surfaces behavior

Oravec, Jakub January 2019 (has links)
The diploma thesis is focused on the research of dynamics of selected heating surfaces behavior. The aim of the thesis is to determine the dynamics of heating and cooling and to determine the effect of these characteristics on energy consumption of the building. The project part deals with the design of a heating solution for a residential building in three variants. An Energetic simulation is made for the designed variants, that compares the consumption of thermal energy during one year. The next simulation research the dynamics of selected large-scale heating surfaces. For each construction, nonstationary models of heating up and cooling were made, which are compared in terms of the thermal inertia.
246

The Effects of Lowered Delivery Temperatures in District Heating : A Quantitative Study / Effekterna of sänkta framledningstemperaturer i fjärrvärmenätet

Julin, Anton, Berthold, Jakob January 2015 (has links)
With development within district heating leading to more incorporation of decentralized production, lowered temperature levels are required to enable these possibilities. Therefore, this study was conducted in collaboration with Fortum with the purpose of investigating and quantifying the effects of lowered delivery temperatures on mass flow and return temperatures. When these effects had been determined, the limiting factors were identified as well as the adjustments needed to enable the lowering delivery temperatures. This study is divided into two sections: a modeling of four type buildings and two case studies of specific areas of the Stockholm district-heating grid. The two sections of the study both use an Excel constructed model to examine the effects of the new proposed delivery temperature levels. The first section uses four type buildings with varying internal temperature levels to display how different secondary systems react to the changes in delivery temperature. The second section contains two case studies of outer parts of the grid where actual buildings are modeled. In the case studies the pipes speeds and secondary systems are analyzed to determine limiting factors for the lowering of the delivery temperatures. Overall this study contributes with quantified results of the effects of four lowered delivery temperature profiles on different customer systems. Analysis of the delivery temperatures showed that the largest change was shifting from the actual delivery temperatures of 2011 to the delivery profile that Fortum currently promised to deliver. The pipes of the studied areas were found not to be a limiting factor even in cases where the when mass flows increased three fold. The greatest limiting factor was determined to be the internal temperatures of the buildings, which set a strict limit and cannot be altered by Fortum without the customers’ cooperation. In conclusion a range of limiting factors were identified that proved to be potential limitations depending on the circumstances of a specific case. Depending on the investment needs in a specific case the economic viability was deemed to most likely be positive. When implementing lowered delivery temperatures in reality it is vital to acquiring data on secondary systems in order to identify the specific limitations of the proposed area. In addition an area of more research on the effects of lowered temperatures on the entirety of the grid as this study only investigates isolated sections.
247

Design of an induction heating domestic water and a device for scheduling its operation

Manuel, Grant January 2009 (has links)
Thesis (MTech (Faculty of Engineering))--Cape Peninsula University of Technology, 2009.Included bibliographical references (p. 98-99).
248

Analýza možností vytápění rodinného domu / Analysis of the possibilities of heating a house

Abíková, Klára January 2013 (has links)
The aim of this thesis is to analyze the possibility of heating the particular house and depending on the results to recommend appropriate option resp. type of fuel needed for heating. For this reason, the paper is primarily focused on general knowledge related to the issue of heating houses, which belong types of heating systems and heating options or heat loss or heat demand for heating. After all the general knowledge is applied to a particular house, which will serve as input for the analysis. Analysis of heating the house is subsequently determined not only from a cost point of view but also from a technical point of view and the output of recommending specific options for heating the house.
249

Heating systems in small houses : A comparison between geothermal heating and district heating / Värmesystem i småhus : En jämförelse mellan bergvärme och fjärrvärme

Fredriksson, Victor, Gluhajic, Bane January 2019 (has links)
District heating and geothermal heating are in present times two established heating systems that are often compared against each other. The purpose of this work is to describe which factors influence the choice of heating system during the planning stage and what the costs are for each system. In this paper, a typical house model has been developed and used as a basis for the comparison of both systems. The comparison has been made in the form of energy calculations in the energy calculation program BV2, where heat requirements and regulatory requirements for energy performance have been compared in different geographical areas in Sweden. Furthermore, cost calculations have been carried out based on the energy calculations' results, where investment costs and annual costs have been set against each other. The result of the work shows how the measurement of energy performance differs from the actual amount of purchased energy due to geographical conditions. In the southern parts of Sweden, where the geographical correction factor is below 0, consumers are penalized by raising the primary energy number, unlike the northern parts where the primary energy number is instead lowered. Based on the cost calculations, it can be concluded that district heating, when available, is more economically advantageous in the short term. Geothermal heating on the other hand is a more profitable alternative in the long run. / Fjärrvärme och bergvärme är idag två etablerade värmesystem som ofta ställs mot varandra. Syftet med det här arbetet är att redogöra vilka faktorer som påverkar valet av värmesystem under projekteringsstadiet och vilka kostnaderna som finns för respektive system. I arbetet har en typisk husmodel tagits fram och använts som grund för jämförelsen av båda systemen. Jämförelsen har dels gjorts i form av energiberäkningar i energiberäkningsprogrammet BV2 där värmebehov och myndighetskrav på energiprestanda har jämförts i olika geografiska områden i Sverige. Vidare har kostnadsberäkningar genomförts utifrån energiberäkningarnas resultat där investeringskostnader och årliga kostnader har ställts mot varandra. Resultatet av arbetet visar hur måttet på energiprestanda skiljer sig från den faktiska mängden köpt energi på grund ut av geografiska förhållanden. I de södra delarna i Sverige där den geografiska korrigeringsfaktorn understiger 0 straffas konsumenter genom att primärenergitalet höjs, till skillnad mot de norra delarna där primärenergitalet istället sänks. Utifrån kostnadsberäkningarna kan man dra slutsatsen att fjärrvärme, när den finns tillgänglig, är mer ekonomiskt fördelaktigt på kort sikt. Bergvärme å andra sidan är ett mer lönsamt alternativ på lång sikt.
250

A temperature study of dairy barn floors

Bainer, Roy January 2011 (has links)
Typescript, etc. / Digitized by Kansas State University Libraries

Page generated in 0.0236 seconds