• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 43
  • 15
  • 9
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 140
  • 140
  • 52
  • 32
  • 29
  • 28
  • 27
  • 25
  • 20
  • 19
  • 19
  • 17
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Changes in Flooding and Flood Protection Along a Channelized Reach of the Hocking River, Athens, Ohio

Koppel, David W. 26 July 2011 (has links)
No description available.
132

Cumulative Impacts of Stream Restoration on Watershed-Scale Flood Attenuation, Floodplain Inundation, and Nitrate Removal

Goodman, Lucas M. 01 1900 (has links)
Severe flooding and excess nutrient pollution, exacerbated by heightened anthropogenic pressures (e.g., climate change, urbanization, land use change, unsustainable agricultural practices), have been detrimental to riverine systems and their estuaries. The degradation of riverine systems can negatively impact human and environmental health, as well as local, regional, and even global economies. Floods provide beneficial ecosystem services (e.g., processing pollutants, transferring nutrients and sediment, supporting biodiversity), but they can also damage infrastructure and result in the loss of human life. Meanwhile, eutrophication can cause anoxic dead zones, harming aquatic ecosystems and public health. To address the issues facing riverine systems, focus has shifted to watershed-scale management plans. However, it can prove challenging to quantify the cumulative impacts of multiple stream restoration projects within a single watershed on flooding and nutrient removal. Previous studies have quantified the effects of stream restoration on flood attenuation. However, our first study fills a substantial knowledge gap by evaluating the impacts of different floodplain restoration practices, varied by location and length, on flood attenuation and floodplain inundation dynamics at the watershed scale during more frequent storm recurrence intervals (i.e., 2-year, 1-year, 0.5-year, and monthly). We created a 1D HEC-RAS model to simulate the effects of Stage 0 restoration within a 4th-order generic watershed based on the Chesapeake Bay watershed. By varying the percent river length restored and location, we found that Stage 0 restoration, especially in 2nd-order rivers, can be particularly effective at enhancing flood attenuation and floodplain inundation locally and farther downstream. We addressed the water quality component by using a random forest machine learning approach coupled with artificial neural networks to find trends and predict nitrate removal rates associated with spatial, temporal, hydrologic, and restoration features. Our results showed that hydrologic conditions were the most important variable for predicting actual nitrate removal rates. Overall, both studies demonstrate the importance of hydrologic connectivity for flood attenuation, channel-floodplain exchange, and nutrient processing. / Maryland Department of Natural Resources; National Fish and Wildlife Foundation through the U.S. Environmental Protection Agency’s Chesapeake Bay Program Office; Chesapeake Bay Trust / Master of Science / Severe flooding and nutrient pollution from sources such as urban and agricultural runoff have been detrimental to the health of rivers. The degradation of rivers can negatively impact human and environmental health, as well as local, regional, and even global economies. Floods can be both helpful, by providing water quality benefits and supporting wildlife, and harmful, causing damage and even loss of life. Excess nutrients, such as nitrogen, can create underwater zones void of life, with serious consequences for aquatic life and public health. To address the flooding and water quality issues facing rivers, focus has shifted to landscapelevel river network management plans. However, it can prove challenging to understand the impacts of multiple stream restoration projects within a larger river network on flooding and nutrient removal. We address the flooding component by using a model to simulate the effects of different floodplain restoration techniques on a medium-sized watershed that is generally based on streams that flow into the Chesapeake Bay. Our model simulated small, relatively frequent storm events that, on average, occur every two years to once a month. By varying restoration length and location, we found that restoration practices with lower streambanks can be particularly effective at slowing down floods, reducing their overall severity by allowing more water to access the floodplains. This was especially true when restoration occurred in smaller streams, and the effects were seen both locally and farther downstream. We address the water quality component by using a different model to find patterns and predict nutrient removal rates associated with different landscape, seasonal, storm event, and restoration features. Our results showed that the most important variable for predicting nutrient removal rates was whether a stream was experiencing normal flow or stormflow conditions. Overall, both studies demonstrate the importance of restoring rivers in a manner that encourages water to flow from the channel into the floodplains during smaller storm events, because this will reduce the severity of downstream flooding while simultaneously improving water quality.
133

Posouzení možností revitalizace vodního toku Osoblaha – úsek II / Assessment of the Possibilities The Revitalization of a Watercourse Osoblaha – reach II

Vysloužilová, Lucie January 2015 (has links)
This thesis deals with examining the possibility of revitalizing the watercourse Osoblaha. It flows through the cadastral territories of municipalities Bohušov, Osoblaha and Kašnice u Bohušova. In this thesis there will be proposed a measure to increase biodiversity of the flow. The trough will be loosened in appropriate segments, oxbow lakes and ponds will be designed. Also the bank shelters for fish stock will be suggested. For slope stabilization will be used reinforcement of fresh willow fences. Impermeable shoots or disintegrating oxbow lakes will be projected in the straight sections of the flow.
134

Návrh opatření na horním toku Svratky / Proposal measures at upper reaches Svratka River

Klepárníková, Radka January 2018 (has links)
The diploma thesis deals with the proposal of measures on the Svratka stream in the cadastral area Český Herálec and Herálec na Moravě. The aim of the diploma thesis is to propose appropriate flood protection in the Herálec urban area and to elaborate proposals of nature friendly measures outside the municipality’s built up area, which will enable the renewal of the ecological functions of Svratka in the spring area. In the diploma thesis the assessment of the current state of the watercourse in the analyzed locality was caried out and also the assessment of the capacity of the watercourse and the objects on there. Furthermore, the flood levels and its areas were determined. Hydraulic water flow calculations were performed using the 1D and 1D/2D numerical model. For calculation, HEC-RAS 5.0.3 was used. When processing a 1D/2D numerical model, a manual describing the progress of work in the HEC-RAS 5.0.3 program was also created. On the basis of the results from the numerical model, a proposal for flood protection measures in the urban area and nature friendly measures in the extravilan was carried out.
135

Návrh přírodě blízkých opatření na vodním toku Bobrava / Proposal for the nature friendly measures on the river Bobrava

Mláděnka, Jakub January 2019 (has links)
The aim of the diploma thesis is to describe and evaluate in detail the current state of the Bobrava river in the interest section – river kilometer 1,832-5,743. Part of the work is to assess the capacity of the river flow and the objects connected with it and find the class of an actual safety at village Zelesice. The calculation of the flow rate is performed by using the 1D mathematical model HEC-RAS for selected N-year flows. On the basis of the results of the flow rate, it is made the idea of natural freindly flood protection before the value of the 20-year flow. The result is two variants of river basin adjustment, when each one is leading to make Zelesice safer place and to improve the current state of the river Bobrava.
136

Studie řešení protipovodňové ochrany části obce Janová na levém břehu Vsetínské Bečvy / Flood protection study of Janová urban neighbourhood situated on the left side of Vsetínská Bečva river

Böhm, Petr January 2012 (has links)
Diploma´s thesis solve flood protection study of Janova (region Vsetín). Model of flow was created based on geometry of the watercourse and hydrological data of Vsetinska Becva on the municipality. Model of flow was created using HEC-RAS 4.1. Calculation results of centenarian maximum peak discharge were base for design measures, which were the necessary for improvement flood protection of area.
137

Revitalizace malého vodního toku / The Revitalization of a Small Watercourse

Svědínková, Renáta January 2013 (has links)
My diploma thesis deals with the issue revitalization of a small stream. Assessment and design of revitalization is done on Kuřimka stream which flows through the cadastral territory of the Moravian Knínice - Chudčice - Kníničky. In the diploma thesis were designed several of revitalization measures: stabilization of longitudinal tilt with the use of stone steps in the bottom and wooden thresholds, sedimentation reservoir for capturing sediment and slope stabilization using willow fences and gabions. Proposal of revitalization measures does not deteriorate runoff conditions.
138

Návrh metodiky stanovení součinitele drsnosti otevřených koryt / Design of methodology for determining roughness coefficient of open channels

Smelík, Lukáš January 2015 (has links)
Determination of immeasurable parameter, the Manning’s roughness coefficient, is a complex problem of open channel hydraulics for more than 200 years. Now it doesn’t exists a method for determining an exact value of 1D roughness coefficient for computation water levels in watercourses. Doctoral thesis is focused for comparing different approaches to determine a roughness coefficient, especially for empirical equations. It were sought empirical equations, which are suitable for wide spectrum of water stages, types of bed material, channel shapes and channel dimensions. Selected equations were sorted on the base of two methods by the best values of medians and standard deviations of measured and computed values of roughness coefficients. Furthermore, it were compared qualities of roughness coefficient determination by tables, by photographic catalogs, CES software and by Cowan’s method, which has been extended and recalibrated. The computed values of roughness coefficients by those four methods were compared with values from own measurements in 27 locations in watercourses near of Brno and Frýdek-Místek. Also it were compared the grain size curves determined by sieving, by Wolman’s method and by Subjective estimation. Doctoral thesis is marginally focused for beginning of sediment movement, roughness coefficient of bedforms (dunes), grass and trees.
139

Quantification of the Effect of Bridge Pier Encasement on Headwater Elevation Using HEC-RAS

Sharma Subedi, Abhijit 21 August 2017 (has links)
No description available.
140

Testing and Refining a Unique Approach for Setting Environmental Flow and Water Level Targets for a Southern Ontario Subwatershed

Beaton, Andrew 15 August 2012 (has links)
In this study Bradford’s (2008) approach for setting ecological flow and water level targets is tested and refined through application within the Lake Simcoe Region Conservation Authority’s (LSRCA) subwatershed of Lover’s Creek. A method for defining subwatershed objectives and identifying habitat specialists through expert input is proposed and tested. The natural regime of each streamflow and wetland site is characterized along with the hydrological alteration at each site. Potential ecological responses to the hydrologic alterations are then hypothesized for the different types of changes calculated at each site. Methods for setting overall ecosystem health and specific ecological objective flow targets are proposed and tested. These targets are integrated into a flow regime for each site and a process for using this information for decision making is suggested. Flow magnitude quantification is attempted using hydraulic modelling and sediment transport equations, however the data used were found to be inadequate for this application. The accuracy of the targets developed using the method presented in this paper is mainly limited by the accuracy of the hydrological model and quantified flow magnitudes. Recommendations for improving these components of the assessment are made. The unique approach and recommendations presented in this paper provide explicit steps for developing flow targets for subwatersheds within the LSRCA. This research contributes toward the advancement of EFA within the LSRCA, which provides opportunity for enhanced protection and restoration of ecosystem health across the watershed. / Lake Simcoe Region Conservation Authority

Page generated in 0.0204 seconds