1 |
An Examination of Distributed Hydrologic Modeling Methods as Compared with Traditional Lumped Parameter ApproachesPaudel, Murari 06 July 2010 (has links) (PDF)
Empirically based lumped hydrologic models have an extensive track record of use where as physically based, multi-dimensional distributed models are evolving for various engineering applications. Despite the availability of high resolution data, better computational resources and robust numerical methods, the usage of distributed models is still limited. The purpose of this research is to establish the credibility and usability of distributed hydrologic modeling tools of the United States Army Corps of Engineers (USACE) in order to promote the extended use of distributed models. Two of the USACE models were used as the modeling tools for the study, with Gridded Surface and Subsurface Hydrologic Analysis (GSSHA) representing a distributed and with Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) representing a lumped model. Watershed Modeling System (WMS) was used as the pre- and post-processing tool. The credibility of distributed models has been established by validating that the distributed models are efficient in solving complex hydrologic problems. The distributed and lumped models in HEC-HMS were compared. Similarly, the capabilities of GSSHA and lumped models in HEC-HMS in simulating land use change scenario were compared. The results of these studies were published in peer-reviewed journals. Similarly, the usability of the distributed models was studied taking GSSHA-WMS modeling as a test case. Some of the major issues in GSSHA-modeling using WMS interface were investigated and solutions were proposed to solve such issues. Personal experience with GSSHA and feedback from the students in a graduate class (CE531) and from participants in the USACE GSSHA training course were used to identify such roadblocks. The project being partly funded by the USACE Engineering Research and Development Center (ERDC) and partly by Aquaveo LLC, the research was motivated in improving GSSHA modeling using the WMS interface.
|
Page generated in 0.0132 seconds