• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 451
  • 82
  • 77
  • 47
  • 41
  • 40
  • 38
  • 20
  • 13
  • 7
  • 7
  • 5
  • 5
  • 4
  • 3
  • Tagged with
  • 981
  • 597
  • 329
  • 263
  • 138
  • 100
  • 98
  • 70
  • 69
  • 68
  • 68
  • 66
  • 62
  • 61
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Statistical Analysis of Wireless Communication Systems Using Hidden Markov Models

Rouf, Ishtiaq 06 August 2009 (has links)
This thesis analyzes the use of hidden Markov models (HMM) in wireless communication systems. HMMs are a probabilistic method which is useful for discrete channel modeling. The simulations done in the thesis verified a previously formulated methodology. Power delay profiles (PDP) of twelve wireless receivers were used for the experiment. To reduce the computational burden, binary HMMs were used. The PDP measurements were sampled to identify static receivers and grid-based analysis. This work is significant as it has been performed in a new environment. Stochastic game theory is analyzed to gain insight into the decision-making process of HMMs. Study of game theory is significant because it analyzes rational decisions in detail by attaching risk and reward to every possibility. Network security situation awareness has emerged as a novel application of HMMs in wireless networking. The dually stochastic nature of HMMs is applied in this process for behavioral analysis of network intrusion. The similarity of HMMs to artificial neural networks makes it useful for such applications. This application was performed using simulations similar to the original works. / Master of Science
442

Hidden Failures in Shipboard Electrical Integrated Propulsion Plants

Meadowcroft, Brian K. 21 June 2010 (has links)
The differences between shipboard and land based power systems are explored to support the main focus of this work. A model was developed for simulating hidden failures on shipboard integrated propulsion plants, IPP. The model was then used to evaluate the segregation of the IPP high voltage, HV, buses in a similar fashion as a shipboard firemain. The HV buses were segregated when loss of propulsion power would put the ship as risk. This new treatment reduces the region of vulnerability by providing a high impedance boundary that limits the effects of a hidden failure of a current magnitude or differential based protective element, without the installation of any additional hardware or software. It is shown that this protection could be further improved through the use of a simple adaptive protection scheme that disarms unneeded protective elements in certain configurations. / Master of Science
443

Threat Assessment and Proactive Decision-Making for Crash Avoidance in Autonomous Vehicles

Khattar, Vanshaj 24 May 2021 (has links)
Threat assessment and reliable motion-prediction of surrounding vehicles are some of the major challenges encountered in autonomous vehicles' safe decision-making. Predicting a threat in advance can give an autonomous vehicle enough time to avoid crashes or near crash situations. Most vehicles on roads are human-driven, making it challenging to predict their intentions and movements due to inherent uncertainty in their behaviors. Moreover, different driver behaviors pose different kinds of threats. Various driver behavior predictive models have been proposed in the literature for motion prediction. However, these models cannot be trusted entirely due to the human drivers' highly uncertain nature. This thesis proposes a novel trust-based driver behavior prediction and stochastic reachable set threat assessment methodology for various dangerous situations on the road. This trust-based methodology allows autonomous vehicles to quantify the degree of trust in their predictions to generate the probabilistically safest trajectory. This approach can be instrumental in the near-crash scenarios where no collision-free trajectory exists. Three different driving behaviors are considered: Normal, Aggressive, and Drowsy. Hidden Markov Models are used for driver behavior prediction. A "trust" in the detected driver is established by combining four driving features: Longitudinal acceleration, lateral acceleration, lane deviation, and velocity. A stochastic reachable set-based approach is used to model these three different driving behaviors. Two measures of threat are proposed: Current Threat and Short Term Prediction Threat which quantify present and the future probability of a crash. The proposed threat assessment methodology resulted in a lower rate of false positives and negatives. This probabilistic threat assessment methodology is used to address the second challenge in autonomous vehicle safety: crash avoidance decision-making. This thesis presents a fast, proactive decision-making methodology based on Stochastic Model Predictive Control (SMPC). A proactive decision-making approach exploits the surrounding human-driven vehicles' intent to assess the future threat, which helps generate a safe trajectory in advance, unlike reactive decision-making approaches that do not account for the surrounding vehicles' future intent. The crash avoidance problem is formulated as a chance-constrained optimization problem to account for uncertainty in the surrounding vehicle's motion. These chance-constraints always ensure a minimum probabilistic safety of the autonomous vehicle by keeping the probability of crash below a predefined risk parameter. This thesis proposes a tractable and deterministic reformulation of these chance-constraints using convex hull formulation for a fast real-time implementation. The controller's performance is studied for different risk parameters used in the chance-constraint formulation. Simulation results show that the proposed control methodology can avoid crashes in most hazardous situations on the road. / Master of Science / Unexpected road situations frequently arise on the roads which leads to crashes. In an NHTSA study, it was reported that around 94% of car crashes could be attributed to driver errors and misjudgments. This could be attributed to drinking and driving, fatigue, or reckless driving on the roads. Full self-driving cars can significantly reduce the frequency of such accidents. Testing of self-driving cars has recently begun on certain roads, and it is estimated that one in ten cars will be self-driving by the year 2030. This means that these self-driving cars will need to operate in human-driven environments and interact with human-driven vehicles. Therefore, it is crucial for autonomous vehicles to understand the way humans drive on the road to avoid collisions and interact safely with human-driven vehicles on the road. Detecting a threat in advance and generating a safe trajectory for crash avoidance are some of the major challenges faced by autonomous vehicles. We have proposed a reliable decision-making algorithm for crash avoidance in autonomous vehicles. Our framework addresses two core challenges encountered in crash avoidance decision-making in autonomous vehicles: 1. The outside challenge: Reliable motion prediction of surrounding vehicles to continuously assess the threat to the autonomous vehicle. 2. The inside challenge: Generating a safe trajectory for the autonomous vehicle in case of future predicted threat. The outside challenge is to predict the motion of surrounding vehicles. This requires building a reliable model through which future evolution of their position states can be predicted. Building these models is not trivial, as the surrounding vehicles' motion depends on human driver intentions and behaviors, which are highly uncertain. Various driver behavior predictive models have been proposed in the literature. However, most do not quantify trust in their predictions. We have proposed a trust-based driver behavior prediction method which combines all sensor measurements to output the probability (trust value) of a certain driver being "drowsy", "aggressive", or "normal". This method allows the autonomous vehicle to choose how much to trust a particular prediction. Once a picture is painted of surrounding vehicles, we can generate safe trajectories in advance – the inside challenge. Most existing approaches use stochastic optimal control methods, which are computationally expensive and impractical for fast real-time decision-making in crash scenarios. We have proposed a fast, proactive decision-making algorithm to generate crash avoidance trajectories based on Stochastic Model Predictive Control (SMPC). We reformulate the SMPC probabilistic constraints as deterministic constraints using convex hull formulation, allowing for faster real-time implementation. This deterministic SMPC implementation ensures in real-time that the vehicle maintains a minimum probabilistic safety.
444

Machine Learning Techniques for Gesture Recognition

Caceres, Carlos Antonio 13 October 2014 (has links)
Classification of human movement is a large field of interest to Human-Machine Interface researchers. The reason for this lies in the large emphasis humans place on gestures while communicating with each other and while interacting with machines. Such gestures can be digitized in a number of ways, including both passive methods, such as cameras, and active methods, such as wearable sensors. While passive methods might be the ideal, they are not always feasible, especially when dealing in unstructured environments. Instead, wearable sensors have gained interest as a method of gesture classification, especially in the upper limbs. Lower arm movements are made up of a combination of multiple electrical signals known as Motor Unit Action Potentials (MUAPs). These signals can be recorded from surface electrodes placed on the surface of the skin, and used for prosthetic control, sign language recognition, human machine interface, and a myriad of other applications. In order to move a step closer to these goal applications, this thesis compares three different machine learning tools, which include Hidden Markov Models (HMMs), Support Vector Machines (SVMs), and Dynamic Time Warping (DTW), to recognize a number of different gestures classes. It further contrasts the applicability of these tools to noisy data in the form of the Ninapro dataset, a benchmarking tool put forth by a conglomerate of universities. Using this dataset as a basis, this work paves a path for the analysis required to optimize each of the three classifiers. Ultimately, care is taken to compare the three classifiers for their utility against noisy data, and a comparison is made against classification results put forth by other researchers in the field. The outcome of this work is 90+ % recognition of individual gestures from the Ninapro dataset whilst using two of the three distinct classifiers. Comparison against previous works by other researchers shows these results to outperform all other thus far. Through further work with these tools, an end user might control a robotic or prosthetic arm, or translate sign language, or perhaps simply interact with a computer. / Master of Science
445

A CMA-FRESH Whitening Filter for Blind Interference Rejection

Jauhar, Ahmad Shujauddin 16 October 2018 (has links)
The advent of spectrum sharing has increased the need for robust interference rejection methods. The Citizens Broadband Radio Service (CBRS) band is soon to be occupied by LTE waveforms and License Assisted Access (LAA) will have LTE signals coexisting with other signals in the 5 GHz band. In anticipation of this need, we present a method for interference rejection of cyclostationary signals, which can also help avoid interference through better detection of low power co-channel signals. The method proposed in this thesis consists of a frequency-shift (FRESH) filter which acts as a whitening filter, canceling the interference by exploiting its cyclostationarity. It learns the cyclostationary characteristics of the interferer blindly, through a property restoration algorithm which aims to drive the spectrum to white noise. The property restoration algorithm, inspired by the constant modulus algorithm (CMA), is applied to each frequency bin to determine the optimal coefficients for the proposed CMA FRESH whitening filter (CFW). The performance of the CFW in interference rejection is compared to a time-invariant version, and proposed use cases are analyzed. The use cases consist of the rejection of a high powered, wider bandwidth interferer which is masking the signal-of-interest (SOI). The interferer is rejected blindly, with no knowledge of its characteristics. We analyzed signal detection performance in the case that the SOI is another user with much lower power, for multiple types of SOIs ranging from BPSK to OFDM. We also deal with the case that the SOI is to be received and demodulated; we recover it and compare resulting bit error rates to state of the art FRESH filters. The results show significantly better signal detection and recovery. / Master of Science / Wireless communication is complicated by the fact that multiple radios may be attempting to transmit at the same frequency, time and location concurrently. This scenario may be a due to malicious intent by certain radios (jamming), or mere confusion due to a lack of knowledge that another radio is transmitting in the same channel. The latter scenario is more common due to congested wireless spectrum, as the number of devices increases exponentially. In either case, interference results. We present a novel interference rejection method in this work, one that is blind to the properties of the interferer and adapts to cancel it. It follows the philosophy of property restoration as extolled by the constant modulus algorithm (CMA) and is a frequency shift (FRESH) filter, hence the name. The process of restoring the wireless spectrum to white noise is what makes it a whitening filter, and is also how it adapts to cancel interference. Such a filter has myriad possible uses, and we examine the use case of rejecting interference to detect or recover the signal-of-interest (SOI) that we are attempting to receive. We present performance results in both cases and compare with conventional time-invariant filters and state of the art FRESH filters.
446

Hidden Failures in Protection Systems and its Impact on Power System Wide-area Disturbances

Elizondo de la Garza, David C. 27 April 2000 (has links)
This document explores Hidden Failures in protection systems, which have been identified as key contributors in the degradation of Power System wide-area disturbances. The Hidden Failure Modes in which the protection systems may fail to operate correctly and their consequences are identified in a theoretical approach. This theoretical side has its practical counterpart since a number of Hidden Failure Modes are found in real wide-area disturbances. The original definition of Hidden Failure, which is a failure that remains undetected and is uncovered by another system event, is included as well as developments on Hidden Failure sequence of events and a methodology for Hidden Failure identification. This method is based on Protection Element Functionality Defects (PEFD), which are applicable to all the elements included in the protective chain. PEFD are classified in two main groups. Primary and Back-up protection schemes applied for Generators, Buses, Transformers and Transmission Lines are analyzed. The abnormal Power System conditions that each Power System element may have are enumerated. A catalogue of the relays or relay systems, in charge of detecting and stopping the continuous presence of the abnormal conditions is developed. Relay families organize this catalogue. The relaying schemes for five Special Protection Systems are described. Thirty-three Hidden Failures Modes are included based on the relaying implementation for Primary protection, Back-up protection and Special Protection Systems. These Hidden Failures Modes are based on PEFD-A. Hidden Failures related to PEFD-B are included in a general fashion. Wide-area disturbances based on NERC reports are analyzed and Hidden Failures are identified employing the developed methodology. The mechanisms in the disturbances are summarized and are applicable to Primary protection, Back-up protection and Special Protection Systems. Regions of Vulnerability and Areas of Consequence definitions are included and are identified for a Power System wide-area disturbance. For some protection schemes the term Condition of Vulnerability was developed. Regions of Vulnerability and Areas of Consequence will bring the initial steps towards the problem solution. Further research directions are oriented towards the development of a computer-based tool to track the regions of vulnerability in real time. / Master of Science
447

Android Application Install-time Permission Validation and Run-time Malicious Pattern Detection

Ma, Zhongmin 31 January 2014 (has links)
The open source structure of Android applications introduces security vulnerabilities that can be readily exploited by third-party applications. We address certain vulnerabilities at both installation and runtime using machine learning. Effective classification techniques with neural networks can be used to verify the application categories on installation. We devise a novel application category verification methodology that involves machine learning the application permissions and estimating the likelihoods of different categories. To detect malicious patterns in runtime, we present a Hidden Markov Model (HMM) method to analyze the activity usage by tracking Intent log information. After applying our technique to nearly 1,700 popular third-party Android applications and malware, we report that a major portion of the category declarations were judged correctly. This demonstrates the effectiveness of neural network decision engines in validating Android application categories. The approach, using HMM to analyze the Intent log for the detection of malicious runtime behavior, is new. The test results show promise with a limited input dataset (69.7% accuracy). To improve the performance, further work will be carried out to: increase the dataset size by adding game applications, to optimize Baum-Welch algorithm parameters, and to balance the size of the Intent sequence. To better emulate the participant's usage, some popular applications can be selected in advance, and the remainder can be randomly chosen. / Master of Science
448

Automatic Phoneme Recognition with Segmental Hidden Markov Models

Baghdasaryan, Areg Gagik 10 March 2010 (has links)
A speaker independent continuous speech phoneme recognition and segmentation system is presented. We discuss the training and recognition phases of the phoneme recognition system as well as a detailed description of the integrated elements. The Hidden Markov Model (HMM) based phoneme models are trained using the Baum-Welch re-estimation procedure. Recognition and segmentation of the phonemes in the continuous speech is performed by a Segmental Viterbi Search on a Segmental Ergodic HMM for the phoneme states. We describe in detail the three phases of the phoneme joint recognition and segmentation system. First, the extraction of the Mel-Frequency Cepstral Coefficients (MFCC) and the corresponding Delta and Delta Log Power coefficients is described. Second, we describe the operation of the Baum-Welch re-estimation procedure for the training of the phoneme HMM models, including the K-Means and the Expectation-Maximization (EM) clustering algorithms used for the initialization of the Baum-Welch algorithm. Additionally, we describe the structural framework of - and the recognition procedure for - the ergodic Segmental HMM for the phoneme segmentation and recognition. We include test and simulation results for each of the individual systems integrated into the phoneme recognition system and finally for the phoneme recognition/segmentation system as a whole. / Master of Science
449

Iterative Decoding and Channel Estimation over Hidden Markov Fading Channels

Khan, Anwer Ali 24 May 2000 (has links)
Since the 1950s, hidden Markov models (HMMS) have seen widespread use in electrical engineering. Foremost has been their use in speech processing, pattern recognition, artificial intelligence, queuing theory, and communications theory. However, recent years have witnessed a renaissance in the application of HMMs to the analysis and simulation of digital communication systems. Typical applications have included signal estimation, frequency tracking, equalization, burst error characterization, and transmit power control. Of special significance to this thesis, however, has been the use of HMMs to model fading channels typical of wireless communications. This variegated use of HMMs is fueled by their ability to model time-varying systems with memory, their ability to yield closed form solutions to otherwise intractable analytic problems, and their ability to help facilitate simple hardware and/or software based implementations of simulation test-beds. The aim of this thesis is to employ and exploit hidden Markov fading models within an iterative (turbo) decoding framework. Of particular importance is the problem of channel estimation, which is vital for realizing the large coding gains inherent in turbo coded schemes. This thesis shows that a Markov fading channel (MFC) can be conceptualized as a trellis, and that the transmission of a sequence over a MFC can be viewed as a trellis encoding process much like convolutional encoding. The thesis demonstrates that either maximum likelihood sequence estimation (MLSE) algorithms or maximum <I> a posteriori</I> (MAP) algorithms operating over the trellis defined by the MFC can be used for channel estimation. Furthermore, the thesis illustrates sequential and decision-directed techniques for using the aforementioned trellis based channel estimators <I>en masse</I> with an iterative decoder. / Master of Science
450

Continuous HMM connected digit recognition

Padmanabhan, Ananth 31 January 2009 (has links)
In this thesis we develop a system for recognition of strings of connected digits that can be used in a hands-free telephone system. We present a detailed description of the elements of the recognition system, such as an endpoint algorithm, the extraction of feature vectors from the speech samples, and the practical issues involved in training and recognition, in a Hidden Markov Model (HMM) based speech recognition system. We use continuous mixture densities to approximate the observation probability density functions (pdfs) in the HMM. While more complex in implementation, continuous (observation) HMMs provide superior performance to the discrete (observation) HMMs. Due to the nature of the application, ours is a speaker dependent recognition system and we have used a single speaker's speech to train and test our system. From the experimental evaluation of the effects of various model sizes on recognition performance, we observed that the use of HMMs with 7 states and 4 mixture density components yields average recognition rates better than 99% on the isolated digits. The level-building algorithm was used with the isolated digit models, which produced a recognition rate of better than 90% for 2-digit strings. For 3 and 4-digit strings, the performance was 83 and 64% respectively. These string recognition rates are much lower than expected for concatenation of single digits. This is most likely due to uncertainties in the location of the concatenated digits, which increases disproportionately with an increase in the number of digits in the string. / Master of Science

Page generated in 0.1971 seconds