• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 15
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 133
  • 33
  • 28
  • 25
  • 25
  • 20
  • 19
  • 19
  • 17
  • 13
  • 13
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Phase space methods in finite quantum systems

Hadhrami, Hilal Al January 2009 (has links)
Quantum systems with finite Hilbert space where position x and momentum p take values in Z(d) (integers modulo d) are considered. Symplectic tranformations S(2ξ,Z(p)) in ξ-partite finite quantum systems are studied and constructed explicitly. Examples of applying such simple method is given for the case of bi-partite and tri-partite systems. The quantum correlations between the sub-systems after applying these transformations are discussed and quantified using various methods. An extended phase-space x-p-X-P where X, P ε Z(d) are position increment and momentum increment, is introduced. In this phase space the extended Wigner and Weyl functions are defined and their marginal properties are studied. The fourth order interference in the extended phase space is studied and verified using the extended Wigner function. It is seen that for both pure and mixed states the fourth order interference can be obtained.
102

Condition-dependent Hilbert Spaces for Steepest Descent and Application to the Tricomi Equation

Montgomery, Jason W. 08 1900 (has links)
A steepest descent method is constructed for the general setting of a linear differential equation paired with uniqueness-inducing conditions which might yield a generally overdetermined system. The method differs from traditional steepest descent methods by considering the conditions when defining the corresponding Sobolev space. The descent method converges to the unique solution to the differential equation so that change in condition values is minimal. The system has a solution if and only if the first iteration of steepest descent satisfies the system. The finite analogue of the descent method is applied to example problems involving finite difference equations. The well-posed problems include a singular ordinary differential equation and Laplace’s equation, each paired with respective Dirichlet-type conditions. The overdetermined problems include a first-order nonsingular ordinary differential equation with Dirichlet-type conditions and the wave equation with both Dirichlet and Neumann conditions. The method is applied in an investigation of the Tricomi equation, a long-studied equation which acts as a prototype of mixed partial differential equations and has application in transonic flow. The Tricomi equation has been studied for at least ninety years, yet necessary and sufficient conditions for existence and uniqueness of solutions on an arbitrary mixed domain remain unknown. The domains of interest are rectangular mixed domains. A new type of conditions is introduced. Ladder conditions take the uncommon approach of specifying information on the interior of a mixed domain. Specifically, function values are specified on the parabolic portion of a mixed domain. The remaining conditions are specified on the boundary. A conjecture is posed and states that ladder conditions are necessary and sufficient for existence and uniqueness of a solution to the Tricomi equation. Numerical experiments, produced by application of the descent method, provide strong evidence in support of the conjecture. Ladder conditions allow for a continuous deformation from Dirichlet conditions to initial-boundary value conditions. Such a deformation is applied to a class of Tricomi-type equations which transition from degenerate elliptic to degenerate hyperbolic. A conjecture is posed and states that each problem is uniquely solvable and the solutions vary continuously as the differential equation and corresponding conditions vary continuously. If the conjecture holds true, the result will provide a method of unifying elliptic Dirichlet problems and hyperbolic initial-boundary value problem. Numerical evidence in support of the conjecture is presented.
103

Positive definite kernels, harmonic analysis, and boundary spaces: Drury-Arveson theory, and related

Sabree, Aqeeb A 01 January 2019 (has links)
A reproducing kernel Hilbert space (RKHS) is a Hilbert space $\mathscr{H}$ of functions with the property that the values $f(x)$ for $f \in \mathscr{H}$ are reproduced from the inner product in $\mathscr{H}$. Recent applications are found in stochastic processes (Ito Calculus), harmonic analysis, complex analysis, learning theory, and machine learning algorithms. This research began with the study of RKHSs to areas such as learning theory, sampling theory, and harmonic analysis. From the Moore-Aronszajn theorem, we have an explicit correspondence between reproducing kernel Hilbert spaces (RKHS) and reproducing kernel functions—also called positive definite kernels or positive definite functions. The focus here is on the duality between positive definite functions and their boundary spaces; these boundary spaces often lead to the study of Gaussian processes or Brownian motion. It is known that every reproducing kernel Hilbert space has an associated generalized boundary probability space. The Arveson (reproducing) kernel is $K(z,w) = \frac{1}{1-_{\C^d}}, z,w \in \B_d$, and Arveson showed, \cite{Arveson}, that the Arveson kernel does not follow the boundary analysis we were finding in other RKHS. Thus, we were led to define a new reproducing kernel on the unit ball in complex $n$-space, and naturally this lead to the study of a new reproducing kernel Hilbert space. This reproducing kernel Hilbert space stems from boundary analysis of the Arveson kernel. The construction of the new RKHS resolves the problem we faced while researching “natural” boundary spaces (for the Drury-Arveson RKHS) that yield boundary factorizations: \[K(z,w) = \int_{\mathcal{B}} K^{\mathcal{B}}_z(b)\overline{K^{\mathcal{B}}_w(b)}d\mu(b), \;\;\; z,w \in \B_d \text{ and } b \in \mathcal{B} \tag*{\it{(Factorization of} $K$).}\] Results from classical harmonic analysis on the disk (the Hardy space) are generalized and extended to the new RKHS. Particularly, our main theorem proves that, relaxing the criteria to the contractive property, we can do the generalization that Arveson's paper showed (criteria being an isometry) is not possible.
104

Bandlimited functions, curved manifolds, and self-adjoint extensions of symmetric operators

Martin, Robert January 2008 (has links)
Sampling theory is an active field of research that spans a variety of disciplines from communication engineering to pure mathematics. Sampling theory provides the crucial connection between continuous and discrete representations of information that enables one store continuous signals as discrete, digital data with minimal error. It is this connection that allows communication engineers to realize many of our modern digital technologies including cell phones and compact disc players. This thesis focuses on certain non-Fourier generalizations of sampling theory and their applications. In particular, non-Fourier analogues of bandlimited functions and extensions of sampling theory to functions on curved manifolds are studied. New results in bandlimited function theory, sampling theory on curved manifolds, and the theory of self-adjoint extensions of symmetric operators are presented. Besides being of mathematical interest in itself, the research contained in this thesis has applications to quantum physics on curved space and could potentially lead to more efficient information storage methods in communication engineering.
105

Bandlimited functions, curved manifolds, and self-adjoint extensions of symmetric operators

Martin, Robert January 2008 (has links)
Sampling theory is an active field of research that spans a variety of disciplines from communication engineering to pure mathematics. Sampling theory provides the crucial connection between continuous and discrete representations of information that enables one store continuous signals as discrete, digital data with minimal error. It is this connection that allows communication engineers to realize many of our modern digital technologies including cell phones and compact disc players. This thesis focuses on certain non-Fourier generalizations of sampling theory and their applications. In particular, non-Fourier analogues of bandlimited functions and extensions of sampling theory to functions on curved manifolds are studied. New results in bandlimited function theory, sampling theory on curved manifolds, and the theory of self-adjoint extensions of symmetric operators are presented. Besides being of mathematical interest in itself, the research contained in this thesis has applications to quantum physics on curved space and could potentially lead to more efficient information storage methods in communication engineering.
106

Hybrid Steepest-Descent Methods for Variational Inequalities

Huang, Wei-ling 26 June 2006 (has links)
Assume that F is a nonlinear operator on a real Hilbert space H which is strongly monotone and Lipschitzian on a nonempty closed convex subset C of H. Assume also that C is the intersection of the fixed point sets of a finite number of nonexpansive mappings on H. We make a slight modification of the iterative algorithm in Xu and Kim (Journal of Optimization Theory and Applications, Vol. 119, No. 1, pp. 185-201, 2003), which generates a sequence {xn} from an arbitrary initial point x0 in H. The sequence {xn} is shown to converge in norm to the unique solution u* of the variational inequality, under the conditions different from Xu and Kim¡¦s ones imposed on the parameters. Applications to constrained generalized pseudoinverse are included. The results presented in this paper are complementary ones to Xu and Kim¡¦s theorems (Journal of Optimization Theory and Applications, Vol. 119, No. 1, pp. 185-201, 2003).
107

Subnormality and Moment Sequences

Hota, Tapan Kumar January 2012 (has links) (PDF)
In this report we survey some recent developments of relationship between Hausdorff moment sequences and subnormality of an unilateral weighted shift operator. Although discrete convolution of two Haudorff moment sequences may not be a Hausdorff moment sequence, but Hausdorff convolution of two moment sequences is always a moment sequence. Observing from the Berg and Dur´an result that the multiplication operator on Is subnormal, we discuss further work on the subnormality of the multiplication operator on a reproducing kernel Hilbert space, whose kernel is a point-wise product of two diagonal positive kernels. The relationship between infinitely divisible matrices and moment sequence is discussed and some open problems are listed.
108

Dilations, Functoinal Model And A Complete Unitary Invariant Of A r-contraction.

Pal, Sourav 11 1900 (has links) (PDF)
A pair of commuting bounded operators (S, P) for which the set r = {(z 1 +z 2,z 1z 2) : |z 1| ≤1, |z 2| ≤1} C2 is a spectral set, is called a r-contraction in the literature. For a contraction P and a bounded commutant S of P, we seek a solution of the operator equation S –S*P = (I –P*P)½ X(I –P*P)½ where X is a bounded operator on Ran(I – P*P)½ with numerical radius of X being not greater than 1. We show the existence and uniqueness of solution to the operator equation above when (S,P) is a r-contraction. We call the unique solution, the fundamental operator of the r-contraction (S,P). As the title indicates, there are three parts of this thesis and the main role in all three parts is played by the fundamental operator. The existence of the fundamental operator allows us to explicitly construct a r-isometric dilation of a r-contraction (S,P), whereas its uniqueness guarantees the uniqueness of the minimal r-isometric dilation. The fundamental operator helps us to produce a genuine functional model for pure r-contractions. Also it leads us to a complete unitary invariant for pure r-contractions. We decipher the structures of r-isometries and r-unitaries by characterizing them in several different ways. We establish the fact that for every pure r-contraction (S,P), there is a bounded operator C with numerical radius being not greater than 1 such that S = C + C* P. When (S,P) is a r-isometry, S has the same form where P is an isometry commuting with C and C*. Also when (S,P) is a r-unitary, S has the same form too with P and C being commuting unitaries. Examples of r-contractions on reproducing kernel Hilbert spaces and their dilations are discussed.
109

Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions

Wang, Roy Chih Chung January 2017 (has links)
The representer theorem from the reproducing kernel Hilbert space theory is the origin of many kernel-based machine learning and signal modelling techniques that are popular today. Most kernel functions used in practical applications behave in a homogeneous manner across the domain of the signal of interest, and they are called stationary kernels. One open problem in the literature is the specification of a non-stationary kernel that is computationally tractable. Some recent works solve large-scale optimization problems to obtain such kernels, and they often suffer from non-identifiability issues in their optimization problem formulation. Many practical problems can benefit from using application-specific prior knowledge on the signal of interest. For example, if one can adequately encode the prior assumption that edge contours are smooth, one does not need to learn a finite-dimensional dictionary from a database of sampled image patches that each contains a circular object in order to up-convert images that contain circular edges. In the first portion of this thesis, we present a novel method for constructing non-stationary kernels that incorporates prior knowledge. A theorem is presented that ensures the result of this construction yields a symmetric and positive-definite kernel function. This construction does not require one to solve any non-identifiable optimization problems. It does require one to manually design some portions of the kernel while deferring the specification of the remaining portions to when an observation of the signal is available. In this sense, the resultant kernel is adaptive to the data observed. We give two examples of this construction technique via the grayscale image up-conversion task where we chose to incorporate the prior assumption that edge contours are smooth. Both examples use a novel local analysis algorithm that summarizes the p-most dominant directions for a given grayscale image patch. The non-stationary properties of these two types of kernels are empirically demonstrated on the Kodak image database that is popular within the image processing research community. Tensors and tensor decomposition methods are gaining popularity in the signal processing and machine learning literature, and most of the recently proposed tensor decomposition methods are based on the tensor power and alternating least-squares algorithms, which were both originally devised over a decade ago. The algebraic approach for the canonical polyadic (CP) symmetric tensor decomposition problem is an exception. This approach exploits the bijective relationship between symmetric tensors and homogeneous polynomials. The solution of a CP symmetric tensor decomposition problem is a set of p rank-one tensors, where p is fixed. In this thesis, we refer to such a set of tensors as a rank-one decomposition with cardinality p. Existing works show that the CP symmetric tensor decomposition problem is non-unique in the general case, so there is no bijective mapping between a rank-one decomposition and a symmetric tensor. However, a proposition in this thesis shows that a particular space of rank-one decompositions, SE, is isomorphic to a space of moment matrices that are called quasi-Hankel matrices in the literature. Optimization over Riemannian manifolds is an area of optimization literature that is also gaining popularity within the signal processing and machine learning community. Under some settings, one can formulate optimization problems over differentiable manifolds where each point is an equivalence class. Such manifolds are called quotient manifolds. This type of formulation can reduce or eliminate some of the sources of non-identifiability issues for certain optimization problems. An example is the learning of a basis for a subspace by formulating the solution space as a type of quotient manifold called the Grassmann manifold, while the conventional formulation is to optimize over a space of full column rank matrices. The second portion of this thesis is about the development of a general-purpose numerical optimization framework over SE. A general-purpose numerical optimizer can solve different approximations or regularized versions of the CP decomposition problem, and they can be applied to tensor-related applications that do not use a tensor decomposition formulation. The proposed optimizer uses many concepts from the Riemannian optimization literature. We present a novel formulation of SE as an embedded differentiable submanifold of the space of real-valued matrices with full column rank, and as a quotient manifold. Riemannian manifold structures and tangent space projectors are derived as well. The CP symmetric tensor decomposition problem is used to empirically demonstrate that the proposed scheme is indeed a numerical optimization framework over SE. Future investigations will concentrate on extending the proposed optimization framework to handle decompositions that correspond to non-symmetric tensors.
110

Module structure of a Hilbert space

Leon, Ralph Daniel 01 January 2003 (has links)
This paper demonstrates the properties of a Hilbert structure. In order to have a Hilbert structure it is necessary to satisfy certain properties or axioms. The main body of the paper is centered on six questions that develop these ideas.

Page generated in 0.0166 seconds