• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 15
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 133
  • 33
  • 28
  • 25
  • 25
  • 20
  • 19
  • 19
  • 17
  • 13
  • 13
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Local Mixture Model in Hilbert Space

Zhiyue, Huang 26 January 2010 (has links)
In this thesis, we study local mixture models with a Hilbert space structure. First, we consider the fibre bundle structure of local mixture models in a Hilbert space. Next, the spectral decomposition is introduced in order to construct local mixture models. We analyze the approximation error asymptotically in the Hilbert space. After that, we will discuss the convexity structure of local mixture models. There are two forms of convexity conditions to consider, first due to positivity in the $-1$-affine structure and the second by points having to lie inside the convex hull of a parametric family. It is shown that the set of mixture densities is located inside the intersection of the sets defined by these two convexities. Finally, we discuss the impact of the approximation error in the Hilbert space when the domain of mixing variable changes.
52

Functional inverse regression and reproducing kernel Hilbert space

Ren, Haobo 30 October 2006 (has links)
The basic philosophy of Functional Data Analysis (FDA) is to think of the observed data functions as elements of a possibly infinite-dimensional function space. Most of the current research topics on FDA focus on advancing theoretical tools and extending existing multivariate techniques to accommodate the infinite-dimensional nature of data. This dissertation reports contributions on both fronts, where a unifying inverse regression theory for both the multivariate setting (Li 1991) and functional data from a Reproducing Kernel Hilbert Space (RKHS) prospective is developed. We proposed a functional multiple-index model which models a real response variable as a function of a few predictor variables called indices. These indices are random elements of the Hilbert space spanned by a second order stochastic process and they constitute the so-called Effective Dimensional Reduction Space (EDRS). To conduct inference on the EDRS, we discovered a fundamental result which reveals the geometrical association between the EDRS and the RKHS of the process. Two inverse regression procedures, a “slicing” approach and a kernel approach, were introduced to estimate the counterpart of the EDRS in the RKHS. Further the estimate of the EDRS was achieved via the transformation from the RKHS to the original Hilbert space. To construct an asymptotic theory, we introduced an isometric mapping from the empirical RKHS to the theoretical RKHS, which can be used to measure the distance between the estimator and the target. Some general computational issues of FDA were discussed, which led to the smoothed versions of the functional inverse regression methods. Simulation studies were performed to evaluate the performance of the inference procedures and applications to biological and chemometrical data analysis were illustrated.
53

Μελέτη εξισώσεων διαφορών σε χώρους Hilbert και Banach και εφαρμογές αυτών

Πετροπούλου, Ευγενία 30 September 2009 (has links)
- / -
54

On representing resonances and decaying states

Harshman, Nathan Lee 15 March 2011 (has links)
Not available / text
55

Spectral theory and measure preserving transformations.

Belley, J. M. (Jean Marc), 1943- January 1971 (has links)
No description available.
56

Uniqueness results for the infinite unitary, orthogonal and associated groups

Atim, Alexandru Gabriel. Kallman, Robert R., January 2008 (has links)
Thesis (Ph. D.)--University of North Texas, May, 2008. / Title from title page display. Includes bibliographical references.
57

Risk Bounds for Regularized Least-squares Algorithm with Operator-valued kernels

Vito, Ernesto De, Caponnetto, Andrea 16 May 2005 (has links)
We show that recent results in [3] on risk bounds for regularized least-squares on reproducing kernel Hilbert spaces can be straightforwardly extended to the vector-valued regression setting. We first briefly introduce central concepts on operator-valued kernels. Then we show how risk bounds can be expressed in terms of a generalization of effective dimension.
58

Semilinear stochastic evolution equations

Zangeneh, Bijan Z. January 1990 (has links)
Let H be a separable Hilbert space. Suppose (Ω, F, Ft, P) is a complete stochastic basis with a right continuous filtration and {Wt,t ∈ R} is an H-valued cylindrical Brownian motion with respect to {Ω, F, Ft, P). U(t, s) denotes an almost strong evolution operator generated by a family of unbounded closed linear operators on H. Consider the semilinear stochastic integral equation [formula omitted] where • f is of monotone type, i.e., ft(.) = f(t, w,.) : H → H is semimonotone, demicon-tinuous, uniformly bounded, and for each x ∈ H, ft(x) is a stochastic process which satisfies certain measurability conditions. • gs(.) is a uniformly-Lipschitz predictable functional with values in the space of Hilbert-Schmidt operators on H. • Vt is a cadlag adapted process with values in H. • X₀ is a random variable. We obtain existence, uniqueness, boundedness of the solution of this equation. We show the solution of this equation changes continuously when one or all of X₀, f, g, and V are varied. We apply this result to find stationary solutions of certain equations, and to study the associated large deviation principles. Let {Zt,t ∈ R} be an H-valued semimartingale. We prove an Ito-type inequality and a Burkholder-type inequality for stochastic convolution [formula omitted]. These are the main tools for our study of the above stochastic integral equation. / Science, Faculty of / Mathematics, Department of / Graduate
59

Compact Operators and the Schrödinger Equation

Kazemi, Parimah 12 1900 (has links)
In this thesis I look at the theory of compact operators in a general Hilbert space, as well as the inverse of the Hamiltonian operator in the specific case of L2[a,b]. I show that this inverse is a compact, positive, and bounded linear operator. Also the eigenfunctions of this operator form a basis for the space of continuous functions as a subspace of L2[a,b]. A numerical method is proposed to solve for these eigenfunctions when the Hamiltonian is considered as an operator on Rn. The paper finishes with a discussion of examples of Schrödinger equations and the solutions.
60

Nonparametric Covariance Estimation for Longitudinal Data

Blake, Tayler Ann, Blake 25 October 2018 (has links)
No description available.

Page generated in 0.1027 seconds