• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 331
  • 29
  • 18
  • 12
  • 12
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 444
  • 444
  • 267
  • 235
  • 118
  • 114
  • 113
  • 81
  • 76
  • 71
  • 65
  • 65
  • 58
  • 53
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Mechanisms of HIV-1 Tat induced immune response

Li, Chun-bong, 李振邦 January 2005 (has links)
published_or_final_version / abstract / Paediatrics and Adolescent Medicine / Doctoral / Doctor of Philosophy
42

Molecular epidemiology of HIV-1 and characterization of drug resistantHIV-1 in Hong Kong

Chen, H. K., Jonathan., 陳漢坤. January 2007 (has links)
published_or_final_version / abstract / Microbiology / Doctoral / Doctor of Philosophy
43

Energetic, structural and dynamic evaluation of HIV-1 proteases

Naicker, Previn 06 February 2015 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. August 2014. / Human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome (AIDS), remains a topic of global concern even though great strides have been made to combat the virus. The high replicative rate of the virus and recombination of the variety of viral strains complicate the treatment of AIDS. There has been an increasing prevalence of African HIV strains in the Americas and Europe. The viral protease (PR) is vital for the propagation of the virus; and thus, is a major target in antiviral therapy. The HIV-1 PR enzyme from the subtype C strain; which predominates in sub- Saharan Africa, has been greatly under-investigated in comparison to the protease from the subtype B strain which predominates in North America and Europe. Enzyme activity data which were part of this work suggested that the South African HIV-1 subtype C protease (CSA PR) displays improved substrate turnover in comparison to the subtype B PR. Thermodynamics and inhibition kinetics of drug binding showed that the C-SA PR is less susceptible to certain clinically-used protease inhibitors when compared to the subtype B PR. A crystal structure of the C-SA PR was solved and showed no difference to the global structure of the subtype B PR. Molecular dynamics simulations showed that the C-SA PR exhibits a wider range of open conformations. Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) was performed to elucidate the mechanism of reduced drug susceptibility displayed by the C-SA PR. HDX-MS data provided insights into the basis of the increased preference for open conformers displayed by the C-SA PR and the stability of the terminal dimer interface which is a target in protease inhibition.
44

Studies on the early events of human immunodeficiency virus replication / Litsa Evlambia Karageorgos.

Karageorgos, Litsa Evlambia January 1994 (has links)
Copy of author's seven page article in pocket inside back cover. / Bibliography: leaves 118-143. / x, 143, [52] leaves, [23] leaves of plates : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Microbiology and Immunology, 1995?
45

Regulators of G-protein signaling, RGS13 and RGS16, are associated with CXCL12-mediated CD4+ T cell migration /

Xia, Lijin, January 2008 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Chemistry and Biochemistry, 2008. / Includes bibliographical references (p. 49-53).
46

An analysis of training effects on school personnel's knowledge, attitudes, comfort, and confidence levels toward educating students about HIV/AIDS in Pennsylvania

Deutschlander, Sharon. January 1900 (has links)
Thesis (Ed. D.)--Indiana University of Pennsylvania. / Includes bibliographical references.
47

A social work study on the impact of HIV/AIDS in the South African Post Office in Durban

Mohau-Buthelezi, Mildred Ntombenhle Mamoketsi. January 2003 (has links)
Thesis (MSD (EAP))--University of Pretoria, 2003.
48

Mechanism of human immunodeficiency virus induced immunedysregulation: TAT & IL-18 interaction

Leung, Sze-ki., 梁詩琪. January 2005 (has links)
published_or_final_version / abstract / Paediatrics and Adolescent Medicine / Master / Master of Philosophy
49

Impact of immune-driven sequence variation in HIV-1 subtype C Gagprotease on viral fitness and disease progression.

Wright, Jaclyn. January 2011 (has links)
Understanding of the viral and host factors that determine time for progression to acquired immunodeficiency syndrome (AIDS) in individuals infected with human immunodeficiency virus type 1 (HIV-1) could aid in the design of an effective HIV-1 vaccine. Human leukocyte antigen (HLA) class I profile is strongly and consistently associated with differential rates of HIV-1 disease progression, however the mechanisms explaining this are not well understood. It has been hypothesised that “protective” HLA alleles select escape mutations in functionally important epitopes in the conserved group specific antigen (Gag) protein resulting in HIV-1 attenuation, which may result in slower disease progression. Many of the studies investigating the fitness cost of Gag escape mutations have concentrated on a few pre-selected mutations and have not assessed fitness consequences in the natural sequence background. Furthermore, the majority of studies have focussed on HIV-1 subtype B, while HIV-1 subtype C is the most prevalent subtype worldwide. Therefore, in the present study, a large population-based approach and clinically-derived Gag-protease sequences were used to comprehensively investigate the relationship between immunedriven sequence variation in Gag, viral replication capacity and markers of disease progression in HIV-1 subtype C chronic infection. The influence of Gag function on HIV-1 disease progression was further investigated in early HIV-1 subtype C infection. It was also hypothesised that Gag may contribute significantly to overall HIV-1 fitness and towards fitness differences between HIV-1 subtypes. Materials and Methods Recombinant viruses encoding Gag-protease, derived from antiretroviral naïve HIV-1 subtype C chronically (n=406) and recently (n=60) infected patients as well as a small subset of HIV-1 subtype B chronically infected patients (n=25), were generated by electroporation of an HIV-inducible green fluorescent protein (GFP)-reporter T cell line with plasmaderived gag-protease PCR products and linearised gag-protease-deleted NL4-3 plasmid. The replication capacities of recombinant viruses, as well as intact HIV-1 isolates from peripheral blood mononuclear cells of patients chronically infected with HIV-1 subtype C (n=16), were assayed in the GFP-reporter T cell line by flow cytometry. Replication capacity was defined as the slope of increase in percentage infected cells from days 3-6 following infection, normalised to the growth of a wild-type NL4-3 control. Replication capacities were related to patient HLA alleles and markers of disease progression (viral load, CD4+ T cell count, and rate of CD4+ T cell decline in chronically infected patients, and viral set point and rate of CD4+ T cell decline in recently infected patients). Replication capacities were compared between isolates and recombinant viruses encoding Gag-protease from the same isolates, as well as between HIV-1 subtype B and C recombinant viruses matched for viral load and CD4+ T cell count. Bulk sequencing of patient -derived gagprotease amplicons was performed and mutations were identified that were significantly associated with altered viral replication capacity. The fitness effect of some of these mutations was directly tested by site-directed mutagenesis followed by assay of the mutant viruses. Results In HIV-1 subtype C chronic infection, protective HLA-B alleles, most notably HLA-B*81 (p<0.0001), were associated with lower replication capacities. HLA-associated mutations at low entropy sites (i.e. conserved sites) in or adjacent to Gag epitopes were associated with lower replication capacities (p=0.02), especially the HLA-B*81-associated 186S mutation in the TL9 epitope (p=0.0001). The fitness cost of this mutation was confirmed in site-directed mutagenesis experiments (p<0.001), and the co-varying mutations tested did not significantly compensate for this fitness cost. Replication capacity also correlated positively of an HIV-inducible green fluorescent protein (GFP)-reporter T cell line with plasmaderived gag-protease PCR products and linearised gag-protease-deleted NL4-3 plasmid. The replication capacities of recombinant viruses, as well as intact HIV-1 isolates from peripheral blood mononuclear cells of patients chronically infected with HIV-1 subtype C (n=16), were assayed in the GFP-reporter T cell line by flow cytometry. Replication capacity was defined as the slope of increase in percentage infected cells from days 3-6 following infection, normalised to the growth of a wild-type NL4-3 control. Replication capacities were related to patient HLA alleles and markers of disease progression (viral load, CD4+ T cell count, and rate of CD4+ T cell decline in chronically infected patients, and viral set point and rate of CD4+ T cell decline in recently infected patients). Replication capacities were compared between isolates and recombinant viruses encoding Gag-protease from the same isolates, as well as between HIV-1 subtype B and C recombinant viruses matched for viral load and CD4+ T cell count. Bulk sequencing of patient -derived gagprotease amplicons was performed and mutations were identified that were significantly associated with altered viral replication capacity. The fitness effect of some of these mutations was directly tested by site-directed mutagenesis followed by assay of the mutant viruses. Results In HIV-1 subtype C chronic infection, protective HLA-B alleles, most notably HLA-B*81 (p<0.0001), were associated with lower replication capacities. HLA-associated mutations at low entropy sites (i.e. conserved sites) in or adjacent to Gag epitopes were associated with lower replication capacities (p=0.02), especially the HLA-B*81-associated 186S mutation in the TL9 epitope (p=0.0001). The fitness cost of this mutation was confirmed in site-directed mutagenesis experiments (p<0.001), and the co-varying mutations tested did not significantly compensate for this fitness cost. Replication capacity also correlated positivelyof an HIV-inducible green fluorescent protein (GFP)-reporter T cell line with plasmaderived gag-protease PCR products and linearised gag-protease-deleted NL4-3 plasmid. The replication capacities of recombinant viruses, as well as intact HIV-1 isolates from peripheral blood mononuclear cells of patients chronically infected with HIV-1 subtype C (n=16), were assayed in the GFP-reporter T cell line by flow cytometry. Replication capacity was defined as the slope of increase in percentage infected cells from days 3-6 following infection, normalised to the growth of a wild-type NL4-3 control. Replication capacities were related to patient HLA alleles and markers of disease progression (viral load, CD4+ T cell count, and rate of CD4+ T cell decline in chronically infected patients, and viral set point and rate of CD4+ T cell decline in recently infected patients). Replication capacities were compared between isolates and recombinant viruses encoding Gag-protease from the same isolates, as well as between HIV-1 subtype B and C recombinant viruses matched for viral load and CD4+ T cell count. Bulk sequencing of patient -derived gagprotease amplicons was performed and mutations were identified that were significantly associated with altered viral replication capacity. The fitness effect of some of these mutations was directly tested by site-directed mutagenesis followed by assay of the mutant viruses. Results In HIV-1 subtype C chronic infection, protective HLA-B alleles, most notably HLA-B*81 (p<0.0001), were associated with lower replication capacities. HLA-associated mutations at low entropy sites (i.e. conserved sites) in or adjacent to Gag epitopes were associated with lower replication capacities (p=0.02), especially the HLA-B*81-associated 186S mutation in the TL9 epitope (p=0.0001). The fitness cost of this mutation was confirmed in site-directed mutagenesis experiments (p<0.001), and the co-varying mutations tested did not significantly compensate for this fitness cost. Replication capacity also correlated positively with baseline viral load (p<0.0001) and negatively with baseline CD4+ T cell count (p=0.0004), but not with subsequent rate of CD4+ T cell decline (p=0.73). In HIV-1 subtype C recent infection, replication capacities of the early viruses did not correlate with subsequent viral set points (p=0.37) but were significantly lower in individuals with below median viral set points (p=0.03), and there was a trend of correlation between lower replication capacities and slower rates of CD4+ T cell decline (p=0.09). Overall, the proportion of host HLA-specific Gag polymorphisms in or adjacent to epitopes was negatively associated with replication capacities (p=0.04) but host HLA-B-specific polymorphisms were associated with higher viral set points (p=0.01), suggesting a balance between effective Gag CD8+ T cell responses and viral replication capacity in influencing viral set point. A moderate statistically significant correlation was found between the replication capacities of whole isolates and their corresponding Gag-protease recombinant viruses (p=0.04) and the replication capacities of the subtype C recombinant viruses were significantly lower than that of the subtype B recombinant viruses (p<0.0001). The subtype-specific difference in the consensus amino acids at Gag codons 483 and 484 was found in site-directed mutagenesis experiments to largely contribute to the fitness difference between subtypes, possibly by influencing budding efficiency. Discussion The data support that protective HLA alleles, in particular HLA-B*81, attenuate HIV-1 through HLA-restricted CD8+ T cell-mediated selection pressure on Gag. Results suggest that viral replication capacity determined by sequence variability in Gag-protease has an impact on HIV-1 disease progression, but also indicate that a balance between HLA-driven fitness costs and maintenance of effective CD8+ T cell responses is important in determining clinical outcome. Gag-protease was observed to significantly contribute to overall HIV-1 replication capacity and variability in this region between HIV-1 subtypes B and C is suggested to partly explain the difference in viral fitness between these subtypes. Specific mutations in Gag-protease associated with viral attenuation were identified and it was also observed that mutations in conserved Gag regions carried the greatest cost to HIV-1 replication capacity. Overall, the data support the concept of, and may assist in the rational design of, an HIV-1 vaccine in which immune responses are directed towards several conserved epitopes, particularly in Gag, with the aim to constrain immune escape (thereby maintaining effective CD8+ T cell responses) and attenuate HIV-1 (in the event of partial escape), resulting in slower disease course and reduced HIV-1 transmission at the population level. / Thesis (Ph.D.)-University of KwaZulu-Natal, 2011.
50

Repression of Tat-transactived HIV-LTR directed gene expression by E1A 12S oncoprotein

Kelly, Gloria Domingo 05 1900 (has links)
No description available.

Page generated in 0.0245 seconds