• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • Tagged with
  • 28
  • 28
  • 11
  • 9
  • 9
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analysis of HIV-1 variable loop 3-specific neutralizing antibody responses by HIV-2/HIV-1 envelope chimeras

Davis, Katie L. January 2008 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed on June 24, 2009). Includes bibliographical references.
22

Who is in a hurry for HIV test results? an exploration of presentation for OraQuick rapid result HIV andibody testing in urban clinical and outreach settings in Alabama /

Zinski, Anne. January 2008 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2008. / Title from PDF title page (viewed on Sept. 17, 2009). Includes bibliographical references (p. 54-62).
23

Designing immunogens to elicit broadly reactive neutralizing antibodies to the HIV envelope /

Derby, Nina Rafterman, January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 155-209).
24

Cellular immunity, immune activation and regulation in HIV-1 infected mother-child pairs : what are the determinants of protective immunity.

Moodley-Govender, Eshia S. 01 November 2013 (has links)
Background: Prevention of Mother-to-child transmission (PMTCT) of human immunodeficiency virus (HIV) remains a significant challenge in resource-poor settings despite the advances in antiretroviral (ARV) treatment. HIV-1 infected individuals are able to achieve viral control naturally, however the underlying mechanisms of immunological control in children remains poorly understood. This study was conducted from 2006 to 2010 to investigate correlates of immune control in HIV-1 clade C infected mother-child pairs in the absence of ARVs. Genotypic and phenotypic viral characteristics, cellular immune responses to HIV-1 and host genetics were characterized and correlated with clinical markers of disease progression. Materials and Methods: To achieve the objectives of the study, three cohorts of mother-child pairs were investigated. The first cohort included 60 untreated mother-child pairs and a further ten uninfected children as controls. The second cohort comprised of ARV treated pairs (n=60). The third cohort consisted of 374 mothers and 374 children (infected, exposed uninfected, HIV negative). Plasma viral loads and absolute CD4+ T cell counts were routinely performed in all three cohorts. HIV-specific CD8+ T cell responses were analyzed by interferon gamma (IFN-γ) enzyme linked immunosorbent spot (ELISpot) assays. Viral replicative fitness was assessed using a green fluorescent protein reporter cell line (GFP).Multi-parameter flowcytometry allowed for the investigation of T cell regulation, exhaustion and activation using CD127/CD25, TIM-3/PD-1 and HLA-DR/CD38 markers respectively. IL-10 promoter single nucleotide polymorphisms (SNPs) at positions -592 and -1082 were determined by TaqMan allelic discrimination assays. Plasma IL-10 levels were measured using a luminex assay. Results: To describe the CTL responses elicited to various regions of the HIV proteome in HIV-infected treatment naïve children. Sixty children under one year of age in the untreated cohort were analyzed for CTL responses spanning the HIV genome, for which only 30 had detectable responses. There was no significant difference in viral load between respondersand non-responders (p=0.2799). The responders predominantly targeted Nef (49%), Gag (17%) and Env (14%) regions. Markers of T cell exhaustion and regulation and theirrelationship to markers of disease progression, were next investigated as these parameters may explain the inability of T cells to effectively control HIV infection. T cell phenotyping compared treated, untreated and uninfected subgroups. In infected children, CD8+ T cells were significantly higher for both the inhibitory marker TIM-3 (p=0.001) and exhaustion marker PD-1 (p=0.0001) compared to uninfected children. Median expression of TIM-3 was higher on CD8+ T cells (46%) compared to CD4+ T cells (20%). TIM-3 and PD-1 expression on T cells were maintained at high levels over time. The frequency of absolute Tregs (p=0.0225) were found to be significantly higher in untreated compared to treated children. HLA-DR+CD38+ on CD8+ T cells were significantly up-regulated in untreated children compared to treated (p=0.002) and uninfected children (p=0.0177). HLA-DR+CD38+ was also significantly higher in children less than 6 months compared to older children on CD4+ (p=0.0437) and CD8+ T cells (p=0.00276). Interestingly, we observed a significant negative correlation between magnitude of CTL response and CD25+CD127- (p=0.0202; r=-0.7333) as well as HLA-DR+CD38+ (p=0.0408; r=-0.5516) on CD8+ T cells. IL-10 is an important immunoregulatory cytokine that has been shown to affect the outcome of chronic viral infections. IL-10 polymorphisms have previously been associated with IL-10 levels and HIV-1 outcomes in adults. Polymorphisms associated with different levels of IL-10 production and their relationship with transmission, markers of disease progression and immune responses were next investigated in this mother-child HIV transmission setting. Genetic analysis of IL-10 in cohort three revealed that HIV-1 acquisition was not associated with either IL10 -592 (AA/CA vs CC) or IL10 -1082 (AA/AG vs GG) single nucleotide polymorphisms (SNPSs). There was a significant association between IL10 -1082 and HIV-1 transmission (p=0.0012). No correlation was observed between IL10 -592 (p=0.4279) or IL10 -1082 SNPs (p=0.6361) and mortality rates in children. IL10 -592C was associated with an elevated magnitude of IFN-γ CD8+ T cell response compared to IL10 -529A (p=0.0071). We found a significant positive correlation between IL-10 plasma levels and viral loads (p=0.0068; r=0.4759) and the ages of the children (p=0.0312; r=0.1737). Conclusion: CD8+ T cell responses and viral fitness did not explain differences in disease progression in selected HIV-1 untreated clade C transmission pairs. T cell activation and regulatory markers influence CTL immune responses resulting in poor clinical outcome. IL10 -1082 polymorphisms may be used as a predictor of HIV-1 transmission. The association between increased IL-10 plasma levels and high viral loads suggest that IL-10 contributes to immune dysfunction in paediatric HIV-1 infection. This study has extended our understanding of immunological and genetic correlates of mother-to-child transmission and disease outcome in ARV naïve (naturally controlling) and HIV treated infected children. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2011.
25

In-vitro bioactivity of fractions from a local medicinal plant on HIV-1 replication, and selected fungal and bacterial pathogens

Mutshembele, Awelani Mirinda 03 1900 (has links)
MSc (Microbiology) / Department of Microbiology / See the attached abstract below.
26

Recombination events and epitope prediction in HIV-1 strains from Southwest Cameroon

Ogola, Bixa O. 18 August 2017 (has links)
MSc (Microbiology) / Department of Microbiology / See the attached abstract below
27

Antibody Responses Elicited by DNA Prime-Protein Boost HIV Vaccines: A Dissertation

Vaine, Michael 08 April 2010 (has links)
The best known correlate of protection provided by vaccines is the presence of pathogen specific antibodies after immunization. However, against the Human Immunodeficiency Virus-1 (HIV-1) the mere presence of antibodies specific for the viral Envelope (Env) protein is not sufficient to provide protection. This necessitates in depth study of the humoral responses elicited during infection and by vaccination. While a significant amount of effort has been invested in studying the evolution of antibody responses to viral infection, only limited progress in understanding antibody responses elicited through vaccination has been made. In the studies described here, I attempt to rectify this deficiency by investigating how the quality of a humoral response is altered with the use of different immunization regimens, in particular a DNA prime-protein boost regimen, or with the use of different model HIV-1 Env gp120 immunogens. In a New Zealand White (NZW) rabbit model, we demonstrate that the broader neutralizing activity elicited with the DNA prime-protein boost regimen may be the result of the elicitation of a higher avidity antibody response and a unique profile of antibody specificities. Specifically, use of a DNA prime-protein boost regimen elicits antibodies targeted to the CD4 binding domain of the HIV-1 Env, a specificity that was not frequently observed when only protein based immunizations were administered. We extended this analysis to sera from healthy human volunteers who participated in early phase HIV vaccine trials utilizing either a protein alone immunization regimen, a canarypox prime-protein boost immunization regimen, or a DNA prime-protein boost immunization regimen. Evaluation of sera from these trials demonstrated that the use of a DNA prime-protein boost regimen results in an antibody response with greater neutralization breadth characterized by an increased frequency and titer of antibodies targeted toward the CD4 binding site (CD4bs). In addition to this, the antibody response elicited by the DNA prime-protein boost regimen also exhibited the capability to mediate antibody dependent cell-mediated cytotoxicity (ADCC) activity as well as activation of the complement system. Additionally, in an attempt to better understand the capabilities of antibodies elicited by a DNA prime-protein boost regimen, we generated gp120 specific monoclonal antibodies (mAbs) from a single DNA primed-protein boosted NZW rabbit. Analysis of mAbs produced from this animal revealed that use of this immunization regimen elicits an antibody repertoire with diverse epitope specificity and cross reactivity. Furthermore, these select mAbs are capable of neutralizing heterologous HIV isolates. Further application of mAb generation in rabbits may provide a valuable tool to study immunogenicity of different vaccines and immunization regimens. Concurrently, while demonstrating that a DNA prime-protein boost regimen elicits a higher quality antibody response than that observed with other leading techniques, we also demonstrated that immunogen selection can play a vital role in the quality of the resulting antibody response. By immunizing with two closely related but phenotypically distinct model gp120 immunogens, known as B33 and LN40, we demonstrated that disparate gp120s have different intrinsic abilities to raise a heterologous neutralizing antibody response. Additionally, we showed that residues found within and flanking the b12 and CD4 binding sites play critical roles in modulating neutralizing activity of sera from animals immunized with LN40 gp120, indicating that the broader neutralizing activity seen with this immunogen may be due to differential elicitation of antibodies to this domain.
28

Characterization of Envelope-Specific Antibody Response Elicited by HIV-1 Vaccines: A Dissertation

Chen, Yuxin 06 January 2015 (has links)
Despite 30 years of intensive research,an effective human immunodeficiency virus (HIV) vaccine still remains elusive. The desirable immune response capable of providing protection against HIV acquisition is still not clear. The accumulating evidence learned from a recent vaccine efficacy correlate study not only confirmed the importance of antibody responses, but also highlighted potential protective functions of antibodies with a broad repertoire of HIV-1 epitope specificities and a wide range of different antiviral mechanisms. This necessitates a deep understanding of the complexity and diversity of antibody responses elicited by HIV-1 vaccines. My dissertation characterizes antibody response profiles of HIV-1 Env antibodies elicited by several novel immunogens or different immunization regimens, in terms of magnitude, persistence, epitope specificity, binding affinity, and biological function. First, to overcome the challenge of studying polyclonal sera without established assays, we expanded a novel platform to isolate Env-specific Rabbit mAbs (RmAb) elicited by DNA prime-protein boost immunization. These RmAbs revealed diverse epitope specificity and cross-reactivity against multiple gp120 antigens from more than one subtype, and several had potent and broad neutralizing activities against sensitive Tier 1 viruses. Further, structural analysis of two V3 mAbs demonstrated that a slight shift of the V3 epitope might have a dramatic impact on their neutralization activity. All of these observations provide a useful tool to study the induction of a desired type of antibody by different immunogens or different immunization regimens. Since heavily glycosylated HIV Env protein is a critical component of an HIV vaccine, we wanted to determine the impact of the HIV Env-associated glycan shield on antibody responses. We were able to produce Env proteins with a selective and homogeneous pattern of N-glycosylation using a glycoengineered yeast cell line. Antigenicity of these novel Env proteins was examined by well-characterized human mAbs. Immunogenicity studies showed that they were immunogenic and elicited gp120- specific antibody responses. More significantly, sera elicited by glycan-modified gp120 protein immunogens revealed better neutralizing activities and increased diversity of epitopes compared to sera elicited by traditional gp120 produced in Chinese Hamster Ovary (CHO) cells. Further, we examined the impact of the delivery order of DNA and protein immunization on antibody responses. We found that DNA prime-protein boost induced a comparable level of Env-specific binding Abs at the peak immunogenicity point to codelivery of DNA. However, antibody responses from DNA prime-protein boost had high avidity and diverse specificities, which improved potency and breadth of neutralizing Abs against Tier 1 viruses. Our data indicate that DNA vaccine priming of the immune system is essential for generation of high-quality antibodies. Additionally, we determined the relative immunogenicity of gp120 and gp160 Env in the context of DNA prime-protein boost vaccination to induce high-quality antibody responses. Immunized sera from gp120 DNA primed animals, but not those primed with gp160 DNA, presented with distinct antibody repertoire specificities, a high magnitude of CD4 binding site-directed binding capabilities as well as neutralizing activities. We confirmed the importance of using the gp120 Env form at the DNA priming phase, which directly determined the quality of antibody response.

Page generated in 0.036 seconds