• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Big data in an HR context: Exploring organizational change readiness, employee attitudes and behaviors

Shah, N., Irani, Zahir, Sharif, Amir M. 08 December 2016 (has links)
Yes / This research highlights a contextual application for big data within a HR case study setting. This is achieved through the development of a normative conceptual model that seeks to envelop employee behaviors and attitudes in the context of organizational change readiness. This empirical application considers a data sample from a large public sector organization and through applying Structural Equation Modelling (SEM) identifies salary, job promotion, organizational loyalty and organizational identity influences on employee job satisfaction (suggesting and mediating employee readiness for organizational change). However in considering this specific context, the authors highlight how, where and why such a normative approach to employee factors may be limited and thus, proposes through a framework which brings together big data principles, implementation approaches and management commitment requirements can be applied and harnessed more effectively in order to assess employee attitudes and behaviors as part of wider HR predictive analytics (HRPA) approaches. The researchers conclude with a discussion on these research elements and a set of practical, conceptual and management implications of the findings along with recommendations for future research in the area.

Page generated in 0.0647 seconds