• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 9
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Decentralized HVAC Operations: Novel Sensing Technologies and Control for Human-Aware HVAC Operations

Jung, Wooyoung 13 April 2020 (has links)
Advances in Information and Communication Technology (ICT) paved the way for decentralized Heating, Ventilation, and Air-Conditioning (HVAC) HVAC operations. It has been envisioned that development of personal thermal comfort profiles leads to accurate predictions of each occupant's thermal comfort state and such information is employed in context-aware HVAC operations for energy efficiency. This dissertation has three key contributions in realizing this envisioned HVAC operation. First, it presents a systematic review of research trends and developments in context-aware HVAC operations. Second, it contributes to expanding the feasibility of the envisioned HVAC operation by introducing novel sensing technologies. Third, it contributes to shedding light on viability and potentials of comfort-aware operations (i.e., integrating personal thermal comfort models into HVAC control logic) through a comprehensive assessment of energy efficiency implications. In the first contribution, by developing a taxonomy, two major modalities – occupancy-driven and comfort-aware operations – in Human-In-The-Loop (HITL) HVAC operations were identified and reviewed quantitatively and qualitatively. The synthesis of previous studies has indicated that field evaluations of occupancy-driven operations showed lower potentials in energy saving, compared to the ones with comfort-aware operations. However, the results in comfort-aware operations could be biased given the small number of explorations. Moreover, required data representation schema have been presented to foster constructive performance assessments across different research efforts. In the end, the current state of research and future directions of HITL HVAC operations were discussed to shed light on future research need. As the second contribution, moving toward expanding the feasibility of comfort-aware operations, novel and smart sensing solutions have been introduced. It has been noted that, in order to have high accuracy in predicting individual's thermal comfort state (≥90%), user physiological response data play a key part. However, the limited number of applicable sensing technologies (e.g., infrared cameras) has impeded the potentials of implementation. After defining required characteristics in physiological sensing solutions in context of comfort-aware operations (applicability, sensitivity, ubiquity, and non-intrusiveness), the potentials of RGB cameras, Doppler radar sensors, and heat flux sensors were evaluated. RGB cameras, available in many smart computing devices, could be a ubiquitous solution in quantifying thermoregulation states. Leveraging the mechanism of skin blood perfusion, two thermoregulation state quantification methods have been developed. Then, applicability and sensitivity were checked with two experimental studies. In the first experimental study aiming to see applicability (distinguishing between 20 and 30C with fully acclimated human bodies), for 16 out of 18 human subjects, an increase in their blood perfusion was observed. In the second experimental study aiming to evaluate sensitivity (distinguishing responses to a continuous variation of air temperature from 20 to 30C), 10 out of 15 subjects showed a positive correlation between blood perfusion and thermal sensations. Also, the superiority of heat flux data, compared to skin temperature data, has been demonstrated in predicting personal thermal comfort states through the developments of machine-learning-based prediction models with feature engineering. Specifically, with random forest classifier, the median value of prediction accuracy was improved by 3.8%. Lastly, Doppler radar sensors were evaluated for their capability of quantifying user thermoregulation states leveraging the periodic movement of the chest/abdomen area induced by respiration. In an experimental study, the results showed that, with sufficient acclimation time, the DRS-based approach could show distinction between respiration states for two distinct air temperatures (20 and 30C). On the other hand, in a transient temperature without acclimation time, it was shown that, some of the human subjects (38.9%) used respiration as an active means of heat exchange for thermoregulation. Lastly, a comprehensive evaluation of comfort-aware operations' performance was carried out with a diverse set of contextual and operational factors. First, a novel comfort-aware operation strategy was introduced to leverage personal sensitivity to thermal comfort (i.e., different responses to temperature changes; e.g., sensitive to being cold) in optimization. By developing an agent-based simulation framework and thorough diverse scenarios with different numbers and combinations of occupants (i.e., human agents in the simulation), it was shown that this approach is superior in generating collectively satisfying environments against other approaches focusing on individual preferred temperatures in selection of optimized setpoints. The energy implications of comfort-aware operations were also evaluated to understand the impact from a wide range of factors (e.g., human and building factors) and their combinatorial effect given the uncertainty of multioccupancy scenarios. The results demonstrated that characteristics of occupants' thermal comfort profiles are dominant in impacting the energy use patterns, followed by the number of occupants, and the operational strategies. In addition, when it comes to energy efficiency, more occupants in a thermal zone/building result in reducing the efficacy of comfort-driven operation (i.e., the integration of personal thermal comfort profiles). Hence, this study provided a better understanding of true viability of comfort-driven HVAC operations and provided the probabilistic bounds of energy saving potentials. These series of studies have been presented as seven journal articles and they are included in this dissertation. / Doctor of Philosophy / With vision of a smart built environment, capable of understanding the contextual dynamics of built environment and adaptively adjusting its operation, this dissertation contributes to context-aware/decentralized HVAC operations. Three key contributions in realization of this goal include: (1) a systematic review of research trends and developments in the last decade, (2) enhancing the feasibility of quantifying personal thermal comfort by presenting novel sensing solutions, and (3) a comprehensive assessment of energy efficiency implications from comfort-aware HVAC operations with the use of personal comfort models. Starting from identifying two major modalities of context-aware HVAC operations, occupancy-driven and comfort-aware, the first part of this dissertation presents a quantitative and qualitative review and synthesis of the developments, trends, and remaining research questions in each modality. Field evaluation studies using occupancy-driven operations have shown median energy savings between 6% and 15% depending on the control approach. On the other hand, the comfort-aware HVAC operations have shown 20% energy savings, which were mainly derived from small-scale test beds in similar climate regions. From a qualitative technology development standpoint, the maturity of occupancy-driven technologies for field deployment could be interpreted to be higher than comfort-aware technologies while the latter has shown higher potentials. Moreover, by learning from the need for comparing different methods of operations, required data schemas have been proposed to foster better benchmarking and effective performance assessment across studies. The second part of this dissertation contributes to the cornerstone of comfort-aware operations by introducing novel physiological sensing solutions. Previous studies demonstrated that, in predicting individual's thermal comfort states, using physiological data in model development plays a key role in increasing accuracy (>90%). However, available sensing technologies in this context have been limited. Hence, after identifying essential characteristics for sensing solutions (applicability, sensitivity, ubiquity, and non-intrusiveness), the potentials of RGB cameras, heat flux sensors, and Doppler radar sensors were evaluated. RGB cameras, available in many smart devices, could be programmed to measure the level of blood flow to skin, regulated by the human thermoregulation mechanism. Accordingly, two thermoregulation states' quantification methods by using RGB video images have been developed and assessed under two experimental studies: (i) capturing subjects' facial videos in two opposite temperatures with sufficient acclimation time (20 and 30C), and (ii) capturing facial videos when subjects changed their thermal sensations in a continuous variation of air temperature from 20 to 30C. Promising results were observed in both situations. The first study had subjects and 16 of them showed an increasing trend in blood flow to skin. In the second study, posing more challenges due to insufficient acclimation time, 10 subjects had a positive correlation between the level of blood flow to skin with thermal sensation. With the assumption that heat flux sensing will be a better reflection of thermoregulation sates, a machine learning framework was developed and tested. The use of heat flux sensing showed an accuracy of 97% with an almost 4% improvement compared to skin temperature. Lastly, Doppler radar sensors were evaluated for their capability of quantifying thermoregulation states by detecting changes in breathing patterns. In an experimental study, the results showed that, with sufficient acclimation time, the DRS-based approach could show distinction between respiration states for two distinct air temperatures (20 and 30C). However, using a transient temperature was proven to be more challenging. It was noted that for some of the human subjects (38.9%), respiration was detected as an active means of heat exchange. It was concluded that specialized artifact removal algorithms might help improve the detection rate. The third component of the dissertation contributed by studying the performance of comfort-driven operations (i.e., using personal comfort preferences for HVAC operations) under a diverse set of contextual and operational factors. Diverse scenarios for interaction between occupants and building systems were evaluated by using different numbers and combinations of occupants, and it was demonstrated that an approach of addressing individual's thermal comfort sensitivity (personal thermal-comfort-related responses to temperature changes) outperforms other approaches solely focusing on individual preferred temperatures. The energy efficiency implications of comfort-driven operations were then evaluated by accounting for the impact of human and building factors (e.g., number of thermal zones) and their combinations. The results showed that characteristics of occupants' thermal comfort profiles are dominant in driving the energy use patterns, followed by the number of occupants, and operational strategies. As one of the main outcomes of this study, the energy saving and efficiency (energy use for comfort improvement) potentials and probabilistic bounds of comfort-driven operations were identified. It was shown that keeping the number of occupants low (under 6) in a thermal zone/building, boosts the energy saving potentials of comfort-driven operations. These series of studies have been presented as seven journal articles, included in this dissertation.
2

Determinação de parâmetros de operação de sistema de distribuição de ar frio pelo piso em ambientes de escritórios. / Determination of operation in office rooms with underfloor air distribution system.

Abe, Viviane Caroline 31 May 2007 (has links)
ABE, V.C. Determinação de parâmetros de operação de sistema de distribuição de ar frio pelo piso em ambientes de escritórios. 2007. 132 p. Dissertação (Mestrado) - Departamento de Engenharia de Construção Civil da Escola Politécnica da Universidade de São Paulo, São Paulo, 2007. Atualmente, um dos principais requisitos para que um ambiente de escritório atenda plenamente às necessidades de uso e ocupação é a flexibilidade, mas com conforto. O sistema de distribuição de ar frio pelo piso (Underfloor Air Distribution System - UFAD) está sendo utilizado nos edifícios de escritórios para garantir a flexibilização integrada do sistema com o mobiliário. Trata-se de um sistema que fornece ar frio proveniente de um plenum, através de difusores localizados nos painéis do piso elevado. Os difusores de ar podem ser ajustados, ou reposicionados pelos próprios usuários dos ambientes, possibilitando o controle das condições térmicas no entorno próximo, de acordo com suas preferências individuais. Embora o sistema de distribuição de ar pelo piso apresente diversas vantagens com relação ao sistema de distribuição de ar convencional, ainda há falta de informações objetivas e diretrizes de projeto padronizadas, havendo a necessidade de realização de mais pesquisas na área. A introdução da Dinâmica dos Fluidos Computacional (Computational Fluid Dynamics - CFD) apresentou uma alternativa para as pesquisas experimentais relacionadas ao estudo do escoamento do ar. Assim, para o desenvolvimento do presente estudo foram utilizados recursos de dinâmica dos fluidos computacional, com o uso do código FLUENT. O objetivo do presente trabalho é apresentar uma estratégia para a determinação dos parâmetros de operação de sistemas de distribuição de ar pelo piso aplicados a ambientes de escritórios. A estratégia baseiase no estabelecimento de inter-relações entre os principais parâmetros que definem o escoamento do ar em ambientes com o sistema de distribuição de ar pelo piso: a vazão de ar insuflado, a temperatura do ar insuflado e a diferença de pressão entre o plenum pressurizado e o interior do ambiente. O emprego da estratégia possibilita que o projetista identifique as diversas combinações entre os parâmetros de operação que resultem numa mesma condição desejada, permitindo assim a escolha da opção mais satisfatória. / ABE, V.C. Determination of operation parameters of rooms with underfloor air distribution system. 2007. 132 p. Dissertation (Master Course) - Departamento de Engenharia de Construção Civil da Escola Politécnica da Universidade de São Paulo, São Paulo, 2007. Nowadays, one of the main requirements of an office room to fully attend the use and occupation needs is the flexibility, but with comfort. The underfloor air distribution system is being used in the office buildings to guarantee the integrated flexibility of the system with the furniture layout. The system supplies cooled air to the room from a pressurized plenum, passing through air diffusers located in the raised floor panels. The air diffusers can be adjusted or relocated by the room users themselves, making possible the control of the thermal conditions in their surroundings, according to their individual preferences. Though the underfloor air distribution system presents a lot of advantages with regard to conventional overhead distribution systems, there is still a lack of objective information and standardized guidelines, and the necessity of accomplishment of more researches about the subject. The introduction of Computational Fluid Dynamics presented an alternative for the experimental tests related to the study of airflow in rooms. Thus, for the development of the present study a CFD tool was used, the code FLUENT. The purpose of the present work is to develop a strategy for the determination of the operation parameters of an underfloor air distribution system applied to office rooms. The strategy is based on the establishment of interrelations between the main parameters that define the airflow in rooms with the underfloor air distribution system: the input volume flux, the input air temperature and the pressure difference between underfloor plenum and the room. The use of this strategy enables the designer to identify several combinations of the operation parameters that result in one desired condition, allowing the choice of the most satisfactory option.
3

Computer Aided Noise Prediction In Heating, Ventilating And Air Conditioning Systems

Gungor, Faruk Emre 01 January 2003 (has links) (PDF)
This thesis aims at preparing a user-friendly software tool for the prediction and analysis of the noise generated in Heating, Ventilating and Air Conditioning (HVAC) Systems elaborating the standardized prediction formulae and data coming from the research studies. For the analysis portion of the software, different types of indoor noise criteria are introduced and implemented in the software to ease the investigation of the level and the quality of the sound perceived by the occupant in a room through such criteria. General software structure and implementation of HVAC elements are explained by different userinterface samples in the thesis. Several case studies are presented to demonstrate the capabilities of the tool prepared in VISUAL BASIC programming language within the scope of the study.
4

Determinação de parâmetros de operação de sistema de distribuição de ar frio pelo piso em ambientes de escritórios. / Determination of operation in office rooms with underfloor air distribution system.

Viviane Caroline Abe 31 May 2007 (has links)
ABE, V.C. Determinação de parâmetros de operação de sistema de distribuição de ar frio pelo piso em ambientes de escritórios. 2007. 132 p. Dissertação (Mestrado) - Departamento de Engenharia de Construção Civil da Escola Politécnica da Universidade de São Paulo, São Paulo, 2007. Atualmente, um dos principais requisitos para que um ambiente de escritório atenda plenamente às necessidades de uso e ocupação é a flexibilidade, mas com conforto. O sistema de distribuição de ar frio pelo piso (Underfloor Air Distribution System - UFAD) está sendo utilizado nos edifícios de escritórios para garantir a flexibilização integrada do sistema com o mobiliário. Trata-se de um sistema que fornece ar frio proveniente de um plenum, através de difusores localizados nos painéis do piso elevado. Os difusores de ar podem ser ajustados, ou reposicionados pelos próprios usuários dos ambientes, possibilitando o controle das condições térmicas no entorno próximo, de acordo com suas preferências individuais. Embora o sistema de distribuição de ar pelo piso apresente diversas vantagens com relação ao sistema de distribuição de ar convencional, ainda há falta de informações objetivas e diretrizes de projeto padronizadas, havendo a necessidade de realização de mais pesquisas na área. A introdução da Dinâmica dos Fluidos Computacional (Computational Fluid Dynamics - CFD) apresentou uma alternativa para as pesquisas experimentais relacionadas ao estudo do escoamento do ar. Assim, para o desenvolvimento do presente estudo foram utilizados recursos de dinâmica dos fluidos computacional, com o uso do código FLUENT. O objetivo do presente trabalho é apresentar uma estratégia para a determinação dos parâmetros de operação de sistemas de distribuição de ar pelo piso aplicados a ambientes de escritórios. A estratégia baseiase no estabelecimento de inter-relações entre os principais parâmetros que definem o escoamento do ar em ambientes com o sistema de distribuição de ar pelo piso: a vazão de ar insuflado, a temperatura do ar insuflado e a diferença de pressão entre o plenum pressurizado e o interior do ambiente. O emprego da estratégia possibilita que o projetista identifique as diversas combinações entre os parâmetros de operação que resultem numa mesma condição desejada, permitindo assim a escolha da opção mais satisfatória. / ABE, V.C. Determination of operation parameters of rooms with underfloor air distribution system. 2007. 132 p. Dissertation (Master Course) - Departamento de Engenharia de Construção Civil da Escola Politécnica da Universidade de São Paulo, São Paulo, 2007. Nowadays, one of the main requirements of an office room to fully attend the use and occupation needs is the flexibility, but with comfort. The underfloor air distribution system is being used in the office buildings to guarantee the integrated flexibility of the system with the furniture layout. The system supplies cooled air to the room from a pressurized plenum, passing through air diffusers located in the raised floor panels. The air diffusers can be adjusted or relocated by the room users themselves, making possible the control of the thermal conditions in their surroundings, according to their individual preferences. Though the underfloor air distribution system presents a lot of advantages with regard to conventional overhead distribution systems, there is still a lack of objective information and standardized guidelines, and the necessity of accomplishment of more researches about the subject. The introduction of Computational Fluid Dynamics presented an alternative for the experimental tests related to the study of airflow in rooms. Thus, for the development of the present study a CFD tool was used, the code FLUENT. The purpose of the present work is to develop a strategy for the determination of the operation parameters of an underfloor air distribution system applied to office rooms. The strategy is based on the establishment of interrelations between the main parameters that define the airflow in rooms with the underfloor air distribution system: the input volume flux, the input air temperature and the pressure difference between underfloor plenum and the room. The use of this strategy enables the designer to identify several combinations of the operation parameters that result in one desired condition, allowing the choice of the most satisfactory option.
5

New simplified thermal and HVAC design tools for building designers

Ellis, Michael Wayne 17 January 2007 (has links)
Please read the abstract in the section 00front of this document / Thesis (PhD (Mechanical Engineering))--University of Pretoria, 2007. / Mechanical and Aeronautical Engineering / unrestricted
6

Integrated dynamic simulation of large thermal systems

Arndt, D C 05 July 2006 (has links)
Studies concluded that more that 10% of all energy consumed in the world is expended by building air-conditioning systems. Energy efficiency in building and HVAC (Heating, Ventilating and Air-conditioning) design is therefore exceptionally important. A cost¬-effective way to improve the energy efficiency of a HV AC system, without compromising indoor comfort, is by implementing better control. System energy cost savings of up to 50% can be realised by optimising the system operating control strategies with direct payback periods of less than a year. However, when changing the operating strategy of a system it is often difficult to predict the resulting changes in system energy consumption and indoor comfort. To achieve these predictions, a dynamic simulation tool, which can efficiently and accurately simulate the building with the HV AC and control system in an integrated fashion, is required. Extensions to the integrated tool QUICKcontrol is therefore proposed to suite the needs of the energy service contractor. QUICKcontrol still has many shortcomings in the availability of component models for certain equipment commonly used in building systems today. New dynamic component models were therefore derived in this study. The accuracy and applicability of integrated building and natural ventilation modelling is illustrated in animal housing facilities. The predicted results obtained during this study were satisfactory to use these models with confidence in this type of building applications. The applicability of building, HV AC system and control simulations was illustrated in conference facilities. The results obtained show the value of integrated building and system simulation in the evaluation of energy cost saving inventions in commercial buildings. The mining and industrial sectors in South Africa consume about 40% of ESKOM's total electrical energy production. Mines alone use nearly 20% of the electricity provided by ESKOM. Ventilation and cooling (VC) systems are responsible for approximately 25% or R750 million of this energy. It will therefore be beneficial if the mines can be more energy clever in order to reduce their VC operating costs. The use of an extended integrated building and system simulation tool was therefore realised to investigate the potential for energy cost savings in mine VC applications. To extend QUICKcontrol for the simulation of other large thermal systems found in mining and industrial applications, new component models and simulations procedures were developed. Two case studies were performed with the extended tool to illustrate its applicability in thermal systems other than building systems. The potential for Demand Side Management (DSM) on a surface cooling plant and an underground clear water-pumping system was investigated. Satisfactory results were obtained during the two investigations to utilise this extended tool with confidence in practice. With more extensions to the tool it should be possible to investigate the potential for energy cost saving on any other thermal industrial applications. / Thesis (PhD (Mechanical Engineering))--University of Pretoria, 2007. / Mechanical and Aeronautical Engineering / unrestricted
7

Mateřská škola Rajhrad / Kindergarten in Rajhrad

Murín, Marek January 2022 (has links)
The topic of my thesis is the design of a kindergarten in Rajhrad. The building is one storey with a flat roof. In the middle of the building there are technical facilities, a kitchen, a director's office and facilities for staff. On the sides there are classrooms with bathrooms and cloakrooms. The load-bearing masonry is designed of Heluz ceramic blocks. The perimeter masonry is insulated with the ETICS contact insulation system. The roof structure is made of prefabricated floor slabs SPIROLL. The building is covered by a green flat roof. The building will be heated by a gas condensing boiler. It will have an air handling unit located on the roof along with photovoltaic panels. Intelligent LED lighting will be deployed throughout the building. The third part deals with the comparison between masonry construction and the more environmentally friendly clay construction. Specifically, it compares the CO2 production of masonry and clay construction of the same building using the SBToolCZ methodology. The results obtained showed that the clay building produces approximately 30% less CO2 than the masonry building. I created my thesis using ArchiCAD and DEKsoft software.
8

Economic Performance Assessment of Three Renovated Multi-Family Houses with Different HVAC Systems

Khadra, Alaa January 2018 (has links)
Since the building sector is responsible for 40% of the energy consumption and 36% of CO2 emissions in the EU, the reduction of energy use has become a priority in this sector. The EU has adopted several policies to improve energy efficiency. One of these policies aims to achieve energy efficient renovations in at least 3% of buildings owned and occupied by governments annually. In Sweden, a large part of existing buildings was built between 1965 and 1974, a period commonly referred to as ‘miljonprogrammet’. Stora Tunabyggen AB, the public housing company in Borlänge municipality, begun a renovation project in the Tjärna Ängar neighborhood within the municipality with the greatest share of its buildings stock from this period. The pilot project started in 2015. The aim of this project was to renovate three buildings with similar measures, that is, by adding 150 mm attic insulation, replacing windows with higher performing ones (U-value 1 W/m ²K), by adding 50 mm of insulation to the infill walls and by the installation of flowreducing taps. The essential difference between the three renovation packages is the HVAC systems. The selected HVAC systems are (1) exhaust air heat pump, (2) mechanical ventilation with heat recovery and (3) exhaust ventilation. Life cycle cost analysis was conducted for the three building and sensitivity analysis for different values of discount rate and energy price escalation was performed. The study found that the house with exhaust ventilation has the lowest life cycle cost and the highest energy cost. The house with exhaust air heat pump has 3% higher life cycle cost and 18% lower energy use at 3% discount rate and 3% energy price escalation. The study found that mechanical ventilation with heat recovery is not profitable, although it saves energy. The sensitivity analysis has shown that the possible increment of price energy and lower discount rate give higher value for the future costs in life cycle cost analysis. This lead to the main finding of this thesis, which is that exhaust air heat pump is the best choice for the owner according to the available data and the assessed parameters.
9

Thermally stimulated current and electrokinetic investigations of HV cable models

Hobdell, Stephen Barry January 2000 (has links)
No description available.
10

Abordagem híbrida para modelagem de sistemas de ar condicionado em edifícios inteligentes. / Hybrid approach for HVAC system modeling in intelligent buildings.

Villani, Emilia 18 February 2000 (has links)
Dentro do conceito de "Edifício Inteligente", que tem como objetivo a otimização da infra-estrutura física e do ambiente em relação a aspectos de produtividade e comportamentais, este trabalho apresenta uma metodologia para modelagem e simulação de estratégias de gerenciamento de sistemas de ar condicionado onde focaliza-se a integração do ar condicionado com os demais sistemas de um edifício. Para tanto introduz-se uma abordagem híbrida onde são considerados aspectos de Sistemas a Eventos Discretos e de Sistemas de Variáveis Contínuas. Como estudo de caso apresenta-se a modelagem do sistema de ar condicionado do Prédio dos Ambulatórios do Hospital das Clínicas da Faculdade de Medicina de São Paulo, para o qual se aplica o método proposto para análise do tratamento de perturbações no sistema de ar condicionado resultantes de variações da carga térmica. / Considering "Intelligent Buildings", which have as one of its purpose to improve its structure and environment in order maximise the effectiveness of its occupants, this work introduce a methodology for modelling and simulation of HVAC systems. The focus is on the integration of the HVAC system with other building systems. A hybrid approach is introduced to consider both discrete and continuous aspects. As case study, we present the models for the Ambulatory Building of Hospital of the Medical School of São Paulo University. Particularly, the proposed methodology is used to analyse if the response of the HVAC system to thermal load variations can be enhanced, improving the thermal comfort, when integration between systems is considered.

Page generated in 0.0502 seconds