• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 293
  • 58
  • 47
  • 25
  • 12
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 599
  • 129
  • 108
  • 92
  • 70
  • 70
  • 48
  • 45
  • 44
  • 41
  • 37
  • 36
  • 35
  • 33
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Remote sensing analysis of natural oil and gas seeps on the continental slope of the northern Gulf of Mexico

De Beukelaer, Sophie Magdalena 15 November 2004 (has links)
Natural hydrocarbon seeps harbor distinctive geological, chemical, and biological features in the marine environment. This thesis verified remote sensing signatures of seeps using in-situ observation and repeated collections of satellite imagery. Bubble streams in the Gulf of Mexico water column from four natural seep sites on the upper continental slope were imaged by a side-scan sonar, which was operated from a submarine near the seafloor, and by acoustic profilers, which were operated from surface ships. These data were correlated with sea surface slicks imaged by Synthetic Aperture Radar (SAR) on the RADARSAT satellite. Comparing non-oily bubble streams from rapidly venting mud volcanoes with oily bubble streams from shallow deposits of gas hydrate showed that they produced notably different signatures. Non-oily bubbles produced high backscatter on the side-scan sonar records, but were difficult to detect with the acoustic profilers. Oily bubbles from hydrate deposits produced acoustic shadows on the side-scan sonar records. The oily bubbles generated clear signatures extending from the seafloor to the near surface on the acoustic profile records. RADARSAT SAR images verified the presence of surface oil slicks over the hydrate deposits, but not over the mud volcanoes. This indicates that SAR imagery will not be able to capture every oil and gas seep in a region because non-oily bubble streams do not create surface oil slicks. A total of 113 natural oily seep sources were identified based on surface slicks in eleven SAR images collected over the northern continental slope. A persistence analysis verified that SAR is a dependable tool for capturing oil slicks because 93.5% of the slick sources identified in the 2001 images were corroborated with slicks in the 2002 images. The sources ranged in depth from 100 to 2000 m and 79% of the sources were in 900 meters or greater of water. Seventy-six percent of the seep sources were associated with salt less than 1500 m below the seafloor and none of the sources were located in the bottom of salt withdrawal basins. Geographical Information Systems (GIS) proved to be a useful tool in these analyses.
292

Application of oxygen-releasing material to enhance in situ aerobic bioremediation of petroleum-hydrocarbon contaminated groundwater

Chen, Ting-yu 21 January 2008 (has links)
Groundwater contamination by petroleum hydrocarbons has become one of the serious environmental problems in many countries. The sources of petroleum-hydrocarbon contaminants may be released from above ground and underground storage tanks, and pipelines. Petroleum hydrocarbons are mainly composed of benzene, toluene, ethyl- benzene, and xylems (BTEX), and other constituents such as methyl-tert-butyl ether (MTBE), naphthalene, 1,3,5-trimethylbenzene (1,3,5-TMB), and 1,2,4-trimethylbenzene (1,2,4-TMB). It is generally recognized that petroleum hydrocarbons have high risks to environmental receptors when hydrocarbon releases occur. Various biological, physical, and chemical remediation technologies (e.g. pump and treat, air sparging, enhanced bioremediation, and chemical oxidation) can be used to remediate petroleum-hydrocarbon contaminated groundwater. However, many of these techniques are typically costly or have limited applications. Permeable reactive barriers (PRBs) are a promising technology for the passive and in situ treatment of contaminated groundwater. A PRB can be defined as ¡§an emplacement of reactive materials in the subsurface designed to intercept a contaminant plume, provide a preferential flow path through the reactive media, and transform the contaminant(s) into environmentally acceptable forms to attain remediation concentration goals at points of compliance.¡¨ The oxygen release materials can be emplaced in the PRBs to passive increase dissolved oxygen (DO) in the subsurface to enhance the intrinsic biodegradation of dissolved hydrocarbons. In the first part of this study, guidelines for PRBs installation have been developed for the remediation of petroleum hydrocarbons, heavy metals, and organic solvents contaminated groundwater. PRB is a cost-effective approach for the remediation of contaminated aquifers. As contaminated groundwater moves through a permeable reactive barrier, the contaminants are scavenged or degraded, and uncontaminated groundwater emerges from the downgradient side of the reactive zone. The permeable reactive barrier concept has several advantages over other remediation technologies currently in use (e.g., pump and treat, air sparging), including absence of mechanical facilities and the electric power, no groundwater extraction and reinjection, treatment in situ, and cost-effective. The first part of this study presents the designs, applications, and case studies of PRB systems on groundwater remediation. In the second part of this study, oxygen release materials have been constructed and evaluated for the appropriate components in batch experiments. Microbial degradation of petroleum hydrocarbons in groundwater can occur naturally. Since the petroleum-hydrocarbons are generally degraded faster under aerobic conditions, aerobic bioremediation can be applied to enhance the biodegradation of petroleum-hydrocarbons within of the plume if oxygen can be provided to the subsurface economically. Batch experiments were conducted to design and identify the components of the oxygen-releasing materials. Cement and gypsum were used as a binder in this mixtures experments. (1) using cement as the binding material The mixtures of the oxygen release material were prepared by blending cement, peat, sand, ethylene-vinyl acetate copolymer(EVA), calcium peroxide (CaO2), and water together at a ratio of 1.0¡G0.18¡G0.20¡G0.10¡G1.12¡G1.74 by weight. Cement was used as a binder and regular medium filter sand was used to increase the permeability of the mixture. Calcium peroxide releases oxygen upon contact water. The designed material with a density of 1.9 g/cm3 was made of 3.5 cm cube for the batch experiment. Results show that the oxygen release rate of the material is 0.046 mg O2/day/g rock. The oxygen release material was able to remain active in oxygen release for more than three months. (2) using gypsum as the binding material The mixtures of the oxygen release material were prepared by blending gypsum, CaO2, sand, and water together at a ratio of 1¡G0.5¡G0.14¡G0.75 by weight. Gypsum was used as a binder and regular medium filter sand was used to increase the permeability of the mixture. Calcium peroxide releases oxygen upon contact water. The designed material with a density of 1.1 g/cm3 was made of 3.5 cm cube for the batch experiment. Results show that the oxygen release rate of the material is 0.031 mg/day/g. The oxygen release material was able to remain active in oxygen release for more than three months. In the third part of this study, immobilization technology was applied to produce the low permeability wrapping film for the construction of oxygen-releasing granular materials. The mixtures of the oxygen release material were prepared by blending alginate, CaO2, and sand together at a ratio of 8.3¡G1.0¡G1 by weight. The low permeability wrapping film of the oxygen release material was able to remain active in oxygen release for two months. In the fourth part of this study, a laboratory-scale column experiment was conducted to evaluate the feasibility of this proposed system on the bioremediation of petroleum-hydrocarbon contaminated groundwater. This system was performed using a series of continuous-flow glass columns including four consecutive soil columns. Simulated petroleum-hydrocarbons contaminated groundwater with a flow rate of 0.263 m/day was pumped into this system. In the column experiment, the samples of column influent and specified sampling ports were collected and analyzed for pH, DO, BTEX, MTBE, and microbial populations. Results show that up to 99% of BTEX removal was observed in this passive system. Results from this study would be useful in designing an efficient and cost-effective passive oxygen-releasing and bioremediation system to remediate petroleum- hydrocarbon contaminated aquifer.
293

Application of Pressure-assisted Oxidation System to Remediate Petroleum-hydrocarbon Contaminated Sediments

Chien, Shao-yi 07 September 2009 (has links)
Sediments are transported by the flowing water then build up on the bottom of water bodies as the materials settle. Contaminated sediments are composed of soils, sand, organic matters, and other minerals that accumulate on the bottom of water bodies and contain toxic or hazardous materials at levels that may adversely affect human health or the environment. The contaminated deposits can be decomposed and released into liquid phase by dramatic changes on environmental conditions. However, the contaminated deposits have a potential of causing changes of nature water system, especially for aquatic livings. Sediments contaminated by light non-aqueous-phase liquids (e.g., fuel oil) and heavy metal are prevalent and of a great concern. The major advantage of Fenton-like oxidation process is that the reagent components are safe to handle and environmentally benign. However, protective enclosure of contaminants with aged sediment matrices and the hydrophobic nature of contaminants limit their accessibility to treatment agents; these obstacles prevent treatment efforts from widespread successes. The interactions of hydrophobic contaminants with the soil matrix in various ways often limit contaminant availability for remediation. In order to overcome this limitation and increase contact, a novel extraction technique that utilized oxidation agent and elevated pressure in consecutive cycles of compression and decompression was developed and applied to soil slurry in the presence of chelating or oxidation agent. The objective of this study was to design a pressure-cycling system that integrates the oxidation agent. This system has the following advantages over traditional chemical treatment: (1) increased process speed, (2) lower operating costs, and (3) the transition metal elements can catalyze the oxidized pollutants. In this study, fuel oil was selected as the target compounds to evaluate the effectiveness of pressure-cycling system on the treatment of fuel oil contaminated sediment. The oxidizing agent used in this study was H2O2. The operating parameters included system pressure, pressure cycles, oxidizing agent concentration, and reaction time. Results show that approximately 38% of TPH was removed after 120 min of reaction with Fenton-like oxidation without pressurization. However, the removal efficiency increased to 47% under the pressure of 10 bar. Thus, pressure-assisted oxidation system is able to accelerate the oxidation reaction, and cause the remove the removal of TPH more effectively. To enhance TPH removal efficiency effectively and reduce the oxidant amount used, water flushing combined with pressure-assisted system as a pretreatment process was applied. Results show that TPH removal efficiency can be significantly enhanced and the amount of oxidant usage can be reduced when the pressurized water flushing was applied before the oxidation process.
294

Exploring hydrocarbon-bearing shale formations with multi-component seismic technology and evaluating direct shear modes produced by vertical-force sources

Alkan, Engin, 1979- 25 February 2013 (has links)
It is essential to understand natural fracture systems embedded in shale-gas reservoirs and the stress fields that influence how induced fractures form in targeted shale units. Multicomponent seismic technology and elastic seismic stratigraphy allow geologic formations to be better images through analysis of different S-wave modes as well as the P-wave mode. Significant amounts of energy produced by P-wave sources radiate through the Earth as downgoing SV-wave energy. A vertical-force source is an effective source for direct SV radiation and provides a pure shear-wave mode (SV-SV) that should reveal crucial information about geologic surfaces located in anisotropic media. SV-SV shear wave modes should carry important information about petrophysical characteristics of hydrocarbon systems that cannot be obtained using other elastic-wave modes. Regardless of the difficulties of extracting good-quality SV-SV signal, direct shear waves as well as direct P and converted S energy should be accounted for in 3C seismic studies. Acquisition of full-azimuth seismic data and sampling data at small intervals over long offsets are required for detailed anisotropy analysis. If 3C3D data can be acquired with improved signal-to-noise ratio, more uniform illumination of targets, increased lateral resolution, more accurate amplitude attributes, and better multiple attenuation, such data will have strong interest by the industry. The objectives of this research are: (1) determine the feasibility of extracting direct SV-SV common-mid-point sections from 3-C seismic surveys, (2) improve the exploration for stratigraphic traps by developing systematic relationship between petrophysical properties and combinations of P and S wave modes, (3) create compelling examples illustrating how hydrocarbon-bearing reservoirs in low-permeable rocks (particularly anisotropic shale formations) can be better characterized using different S-wave modes (P-SV, SV-SV) in addition to the conventional P-P modes, and (4) analyze P and S radiation patterns produced by a variety of seismic sources. The research done in this study has contributed to understanding the physics involved in direct-S radiation from vertical-force source stations. A U.S. Patent issued to the Board of Regents of the University of Texas System now protects the intellectual property the Exploration Geophysics Laboratory has developed related to S-wave generation by vertical-force sources. The University’s Office of Technology Commercialization is actively engaged in commercializing this new S-wave reflection seismic technology on behalf of the Board of Regents. / text
295

An ensemble Kalman filter module for automatic history matching

Liang, Baosheng, 1979- 29 August 2008 (has links)
The data assimilation process of adjusting variables in a reservoir simulation model to honor observations of field data is known as history matching and has been extensively studied for few decades. However, limited success has been achieved due to the high complexity of the problem and the large computational effort required by the practical applications. An automatic history matching module based on the ensemble Kalman filter is developed and validated in this dissertation. The ensemble Kalman filter has three steps: initial sampling, forecasting through a reservoir simulator, and assimilation. The initial random sampling is improved by the singular value decomposition, which properly selects the ensemble members with less dependence. In this way, the same level of accuracy is achieved through a smaller ensemble size. Four different schemes for the assimilation step are investigated and direct inverse and square root approaches are recommended. A modified ensemble Kalman filter algorithm, which addresses the preference to the ensemble members through a nonequally weighting factor, is proposed. This weighted ensemble Kalman filter generates better production matches and recovery forecasting than those from the conventional ensemble Kalman filter. The proposed method also has faster convergence at the early time period of history matching. Another variant, the singular evolutive interpolated Kalman filter, is also applied. The resampling step in this method appears to improve the filter stability and help the filter to deliver rapid convergence both in model and data domains. This method and the ensemble Kalman filter are effective for history matching and forecasting uncertainty quantification. The independence of the ensemble members during the forecasting step allows the benefit of high-performance computing for the ensemble Kalman filter implementation during automatic history matching. Two-level computation is adopted; distributing ensemble members simultaneously while simulating each member in a parallel style. Such computation yields a significant speedup. The developed module is integrated with reservoir simulators UTCHEM, GEM and ECLIPSE, and has been implemented in the framework Integrated Reservoir Simulation Platform (IRSP). The successful applications to two and three-dimensional cases using blackoil and compositional reservoir cases demonstrate the efficiency of the developed automatic history matching module.
296

Iteratively coupled reservoir simulation for multiphase flow in porous media

Lu, Bo, 1979- 29 August 2008 (has links)
Not available / text
297

Characterisation of unresolved complex mixtures of hydrocarbons

Gough, Mark Adrian January 1989 (has links)
The hydrocarbons of recent polluted sediments, in-reservoir and laboratory biodegraded crude oils, and certain petroleum products (e.g. lubricating oils) often display 'humps' or Unresolved Complex Mixtures (UCMs) when analysed by gas chromatography (GC). Although widespread and often abundant, to date little is known of their detailed molecular composition. Standard chromatographic methods of isolation of model aliphatic and aromatic hydrocarbon UCMs from lubricating oils followed by conventional methods of analysis provided little compositional detail. Thus GC and GC-electron impact mass spectrometry (GC-EIMS) was limited to an estimate of carbon number ranges and to the identification of certain series of 'biological marker' compounds. However, these were well resolved and were estimated to account for <10% of the total detector response. Further analyses were performed by chemical ionisation-MS (CI-MS), probe distillation EI-MS, field ionisation-MS (FIMS), and elemental analysis; yet the information provided by each was limited to a few 'average' molecular types. In view of the limitations of conventional methods of analysis, alternative methods were adopted. These utilised novel chemical and pyrolytic degradations of the UCM hydrocarbons. Chemical oxidation with Cr03 in glacial acetic acid produced reasonable yields of total recoverable material (40-80%). Furthermore, a high proportion were functionalised (>90%), and many resolved, which allowed their identification by EI and CI GC-MS. Surprisingly, the most abundant products of oxidation of hydrocarbon UCMs were straight chain monocarboxylic acids. This appeared to contradict literature consensus on UCM composition, namely a predominance of highly branched and/or cyclic hydrocarbons. However, from literature reported CrO oxidations of hydrocarbons, potential precursor compounds were proposed. These were monoalkyl substituted 'TO-branched acyclic and monocyclic alkanes for the aliphatic UCM and alkyl 'TO-branched monoaromatic hydrocarbons for the aromatic UCM. Proposed precursor UCM hydrocarbons were confirmed by synthesis and chemical oxidation under the same conditions. Thus each of the synthetic candidate UCM hydrocarbons [7-n-hexylnonadecane, 9-(2-phenylethyl)-heptadecane and 9-(2- cyc 1 ohexyl ethyl j--hep tade cane] produced n-acids on oxidation with Cr03- Further correlations were found for products of other synthetic alkanes and less abundant UCM oxidation products. For example, n-alkan-2-ones. iso alkan-2- ones, and 7-methyl--y-lactones could all be correlated with methyl substituted acyclic alkyl linkages on UCM hydrocarbons. The application of chemical oxidation to aliphatic UCMS of varied origin showed the technique has great potential for fingerprinting such samples. GC-MS analysis of a selected series of resolved product compounds (alkyl ketones, -y-methyl--y-lactones) showed good correlations for samples of the sane origin, yet distinct differences for UCHs from different sources. Biodegradation of the three candidate UCM hydrocarbons alongside acyclic isoprenoid alkanes and normal and monomethyl alkanea showed the UCM hydrocarbons were at least as resistant to microbial degradation as the isoprenoid alkanes. In this context it is therefore concluded that the candidate UCM compounds serve as good molecular models for hydrocarbon UCMs.
298

Surfactant-enhanced spontaneous imbibition process in highly fractured carbonate reservoirs

Chen, Peila 17 June 2011 (has links)
Highly fractured carbonate reservoirs are a class of reservoirs characterized by high conductivity fractures surrounding low permeability matrix blocks. In these reservoirs, wettability alteration is a key method for recovering oil. Water imbibes into the matrix blocks upon water flooding if the reservoir rock is water-wet. However, many carbonate reservoirs are oil-wet. Surfactant solution was used to enhance spontaneous imbibition between the fractures and the matrix by both wettability alteration and ultra-low interfacial tensions. The first part of this study was devoted to determining the wettability of reservoir rocks using Amott-Harvey Index method, and also evaluating the performance of surfactants on wettability alteration, based on the contact angle measurement and spontaneous imbibition rate and ultimate oil recovery on oil-wet reservoir cores. The reservoir rocks have been found to be slightly oil-wet. One cationic surfactant BTC8358, one anionic surfactant and one ultra-low IFT surfactant formulation AKL-207 are all found to alter the wettability towards more water-wet and promote oil recovery through spontaneous imbibition. The second part of the study focused on the parameters that affect wettability alteration by surfactants. Some factors such as core dimension, permeability and heterogeneity of porous medium are evaluated in the spontaneous imbibition tests. Higher permeability leads to higher imbibition rate and higher ultimate oil recovery. Heterogeneity of core samples slows down the imbibition process if other properties are similar. Core dimension is critical in upscaling from laboratory conditions to field matrix blocks. The imbibition rate is slower in larger dimension of core. Further, we investigated the effects of EDTA in surfactant-mediated spontaneous imbibition. Since high concentration of cationic divalent ions in the aqueous solution markedly suppresses the surfactant-mediated wettability alteration, EDTA improved the performance of surfactant in the spontaneous imbibition tests. It is proposed in the thesis that surfactant/EDTA-enhanced imbibition may involve the dissolution mechanism. More experiments should be conducted to verify this mechanism. The benefits of using EDTA in the surfactant solution include but not limited to: altering the surface charge of carbonate to negative, producing the in-situ soap, reducing the brine hardness, decreasing the surfactant adsorption, and creating the water-wet area by dissolving the dolomite mineral. / text
299

Regional structure, stratigraphy, and hydrocarbon potential of the Mexican sector of the Gulf of Mexico

Rodriguez, Anthony Byron 02 November 2011 (has links)
I have compiled digital seismic and well data over a region of approximately 700,000 km² to better improve the correlation of the Mexican sector of the Gulf of Mexico (MGOM) with the better studied and more explored U.S. sector. I have ~25,000 km of regional 2D lines that were collected by the University of Texas in the 1970's. I have digitized data from published PEMEX data from the MGOM using SEG-Y converter software and incorporated these data into my seismic grid. Using these data, I interpreted and correlated 20 surfaces that range in age from Late Jurassic to Recent. The combined shelf-slope-basin dataset from the MGOM allows for correlation of units from the deepwater MGOM, across into the Mexican Ridges passive margin foldbelt, and onto the Mexican shelf. I have also incorporated seismic data from the offshore Chicxulub crater and correlated units in the Yucatan platform area with the deepwater MGOM. This regional data set indicates that normal, growth faulting linked with downdip toe thrusts and folds of the Mexican Ridges initiated in post-Middle Miocene time and are therefore unrelated to the earlier Paleogene Laramide uplift deformation phase. Shelf-slope-deep basin seismic facies of Eocene and Oligocene units show an influx of clastic materials linked with regional uplift and volcanic events affecting central Mexico during this period. I propose that the deepwater folds of the Mexican Ridges accompanied shelf-edge gravity sliding and normal faulting activated during accelerated Oligo-Miocene uplift, regional volcanic activity, and erosion of the Mexican landmass. Downdip sliding occurred on the seaward-dipping top Cretaceous carbonate unit (7° to 13°) along with overlying horizons that range in dip from 1° to 2°. Shelf-slope-deep basin seismic facies of the Paleocene units around the Yucatan peninsula suggest a sediment-starved and slide-free carbonate margin with a current basinward dip of approximately 12° and significantly greater than those dips observed along the present-day eastern Gulf of Mexico. Based on the seismic interpretations and plate reconstructions, I propose four major tectonosequences fill the Gulf of Mexico basin: 1) A Late Jurassic to Late Cretaceous passive margin phase; 2) a Late Cretaceous to Late Eocene Laramide deformational phase; 3) a Late Eocene to Middle Miocene passive margin phase; and 4) a Late Miocene to Recent Neogene deformational phase. / text
300

Ιζηματολογική και γεωχημική ανάλυση. Δυναμικό γένεσης υδρογονανθράκων στο νότιο τμήμα της Κεντρικής Κρήτης

Μπελιβάνη, Δήμητρα 20 April 2015 (has links)
Η παρούσα διπλωματική διατριβή με τίτλο «Ιζηματολογική και Γεωχημική ανάλυση - Δυναμικό γένεσης υδρογονανθράκων στο νότιο τμήμα της κεντρικής Κρήτης», εκπονήθηκε στα πλαίσια μεταπτυχιακού προγράμματος με τίτλο «Γεωλογικές Διεργασίες στη Λιθόσφαιρα και Γεωπεριβάλλον», του τμήματος Γεωλογίας της σχολής Θετικών Επιστημών του Πανεπιστημίου Πατρών.Σκοπός της παρούσας διατριβής είναι η μελέτη τόσο κλαστικών όσο και ανθρακικών ιζημάτων, από διαφορετικά τεκτονικά καλύμματα, κεντρικά και νότια του νήσου Κρήτης. Η παρούσα διατριβή βασίστηκε στην σύνθεση δεδομένων πεδίου αλλά και σε μια σειρά εργαστηριακών αναλύσεων η οποία περιλάμβανε, ιζηματολογική και γεωχημική ανάλυση. Για την εργαστηριακή ανάλυση συλλέχθηκαν 72 δείγματα, εκ των οποίων τα περισσότερα ήταν κλαστικά ενώ κάποια εξ’ αυτών ήταν ανθρακικά. Κοκκομετρική ανάλυση έγινε σε 32 δείγματα ενώ τα υπόλοιπα ήταν ισχυρά διαγενημένα και περιγραφή τους έγινε μακροσκοπικά. Γεωχημική ανάλυση πραγματοποιήθηκε στο σύνολο των δειγμάτων.Πιο συγκεκριμένα, έγιναν κοκκομετρικές αναλύσεις των ιζημάτων, επεξεργασία των στατιστικών παραμέτρων, ποσοτικός προσδιορισμός του Οργανικού Άνθρακα (Corg) και του Ανθρακικού Ασβεστίου (CaCO3). Μελετήθηκαν τα αποθετικά περιβάλλοντα των ιζημάτων, οι συνθήκες σχηματισμού τους που σε συνδυασμό με τη γεωδυναμική εξέλιξη της περιοχής μελέτηςμας έδωσε τη δυνατότητα εκτίμησης της πιθανότητας ύπαρξης πεδίων μητρικών πετρωμάτων υδρογονανθράκων. / The present diploma thesis entitled "Sedimentological and Geochemical analysis - hydrocarbon generation potential in the southern part of central Crete," worked out during the postgraduate program entitled "Geological Processes in Lithosphere and Geoenvironment" of Geology of the Faculty of Sciences of the University of Patras.The purpose of this thesis is to study both clastic and carbonate sediments from different tectonic covers, center and south of the island of Crete. This thesis was based on field data composition but also in a series of laboratory analyzes that included, sedimentological and geochemical analysis. For laboratory analysis were collected 72 samples, of which most were clastic and some of them were carbonates. Particle size analysis was performed on 32 samples while the rest were strong diagenimena and their description became macroscopically. Geochemical analysis was performed on all deigmaton.Pio specifically made granulometric analyzes of sediments, processing of statistical parameters, quantification of organic carbon (Corg) and Calcium Carbonate (CaCO3). They studied the depositional environments sediment their forming conditions in combination with the development of geodynamic region meletismas enabled assessment of fields existence probability hydrocarbon parent rock.

Page generated in 0.0186 seconds