• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 12
  • 7
  • 2
  • 1
  • Tagged with
  • 62
  • 62
  • 18
  • 17
  • 15
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The active compression wave cochlear amplifier

Flax, Matthew Raphael, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2008 (has links)
This thesis investigates hair cell (He) homeostasis and the compression wave cochlear amplifier. In the first part of the thesis, an accurate physiological treatment of a generic HC is conducted using a nonlinear distributed parameter physical model. This model includes the major ionic species (sodium, potassium and chlorine), defining the active cellular homeostatic properties. This model is used for transient response analysis. Resting state and transient responses of the HC model are in excellent agreement with the experimental literature. HCs in this model are most simply classified as instantaneous nonlinear transduction devices (i. e. their homeostatic mechanisms are not significantly frequency selective). A compression wave cochlear amplifier (CW-CA) is defined and modelled for the first time in the second part of the thesis. It is a physiological model that addresses three main elements present in the peripheral hearing circuit: cochlear mechanics, HC nonlinearity, and neurology. The actual physiological feedback mechanism of the CW-CA is realistic. A passive travelling wave (or other mechanical) vibration is the input to the system. Whilst the travelling wave wiggles the Organ of Corti, the compression wave pulsates it. The CW-CA is an alternative to the physiologically ill-defined locally active travelling wave cochlear feedback amplifier proposed by others. The new CW-CA model results in a cycle-by-cycle amplifier with nonlinear response. It is capable of assuming an infinite number of different operating states. The stable and first few amplitude-limited unstable states are significant in describing the operation of the peripheral hearing system. The CW-CA model can explain a large number of hearing phenomena. Several of these are investigated by means of a system analysis for both the stable and unstable cases. The system is studied and the tone, two-tone suppression and distortion product responses are found to align well with published results. Explanations for various mechanical, HC and neurological phenomena are discussed and presented. For example, previously poorly understood phenomena such as otoacoustic emissions and neural spontaneous rates are accounted for.
2

The relationship between auditory efferent function and frequency selectivity in man

Hill, Jennifer Clare January 1999 (has links)
No description available.
3

Chick homologues of Notch, Delta and Serrate : their roles in the developing inner ear and elsewhere

Myat, Anna January 1995 (has links)
No description available.
4

Mechanisms of High Sensitivity and Active Amplification in Sensory Hair Cells

Khamesian, Mahvand 01 October 2018 (has links)
No description available.
5

A role for potassium channels in sensory signaling in the mouse inner ear /

Risner, Jessica Ruth. January 2008 (has links)
Thesis (Ph. D.)--University of Virginia, 2008. / Includes bibliographical references. Also available online through Digital Dissertations.
6

Atomic force microscopic studies of inner ear structure and mechanics /

Zelenskaya, Alexandra, January 2004 (has links)
Diss. Stockholm : Karol. inst., 2004.
7

Mechanotransduction and adaptation in mammalian vestibular and auditory hair cells

Stauffer, Eric Alan. January 2008 (has links)
Thesis (Ph. D.)--University of Virginia, 2008. / Title from title page. Includes bibliographical references. Also available online through Digital Dissertations.
8

Characterization of myosin I in the inner ear

Phillips, Kelli R. January 2007 (has links)
Thesis (Ph. D.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains vii, 114 p. : ill. (some col.). Includes abstract. Includes bibliographical references.
9

The roles of N-Myc and L-Myc during inner ear neurosensory development

Kopecky, Benjamin Joseph 01 December 2013 (has links)
Introduction: Hearing loss affects over 500 million people worldwide and results from irreversible damage to inner ear hair cells. The only available treatment is cochlear implants, which may be unable to provide sensory input if neuronal connections are lost, as they are in mouse models. Thus, regeneration of hair cells offers the only permanent cure; however, such therapeutic intervention requires a detailed molecular understanding inner ear development and hair cell maintenance. During mouse development, there is a balance between proliferation and differentiation that not only determines the size of the ear, but also is needed to form a functional sensory unit. The fulcrum to this balance is N-Myc, a key transcription factor that acts as a node incorporating many upstream growth signaling pathways and funnels them to directly alter the cell cycle and at the same time inhibits differentiation. The loss of N-Myc results in major morphogenetic abnormalities, including a progressive loss of cochlear, despite their initial formation. Interestingly, N-Myc is present in inner ear hair cells after birth, long after proliferation in the inner ear ceased. In addition to N-Myc, L-Myc is co-expressed throughout development in the inner ear. This data suggests that N-Myc and L-Myc may play partially redundant roles both early during development and later in hair cells. Elucidating the relative importance of the Mycs and their interdependent roles in maintaining the balance between proliferation and differentiation may shed light on future hair cell regeneration avenues. Methods: We generated two Cre-LoxP lines, knocking out both N-Myc and L-Myc before (Pax2-Cre) and after (Atoh1-Cre) hair cell formation. We assessed the possibility of Myc redundancy through 3D reconstructions generated from confocal image stacks from E10.5-E18.5 and the effects of early Myc loss on the balance between proliferation and differentiation through a quantitative PCR study that assessed relative changes in gene expression, using the Pax2-Cre N-Myc f/f L-Myc f/f mice. We assessed organ of Corti development and functionality at P21 and four months of age in the Atoh1-Cre N-Myc f/f L-Myc f/f mice. Results: The development of the Pax2-Cre N-Myc f/f L-Myc f/f mutant ear was more severely impacted than the Pax2-Cre N-Myc f/f alone, as shown by an additional 50% reduction in size. Genes important to cell cycle maintenance were downregulated whereas differentiation transcription factors were initially downregulated but subsequently later upregulated to normal levels. In Atoh1-Cre N-Myc f/f L-Myc f/f mice, there were no defects in hair cell development. Discussion: There appears to be redundancy between N-Myc and L-Myc with N-Myc playing a more important role in inner ear formation. The late-onset defects seen in the Pax2-Cre N-Myc f/f mice appear to be a result of abnormal formation of hair cells due to the disruption in the balance between proliferation and differentiation much earlier on. This is the first time such a late-onset hair cell loss has been shown to be due to a defect sustained much earlier and is an important finding as the majority of people suffer from late-onset hearing loss. Additionally, these findings highlight the continued therapeutic importance in elucidating the molecular interactions controlling the delicate shift from a proliferating precursor to a differentiating cell.
10

Tuning in vestibular hair cells of a turtle Trachemys scripta /

Moravec, William J. January 2006 (has links)
Thesis (M.S.)--Ohio University, June, 2006. / Title from PDF t.p. Includes bibliographical references (p. 104-111)

Page generated in 0.053 seconds