• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Age-related hair pigment loss

Tobin, Desmond J. 20 February 2015 (has links)
Yes / Humans are social animals that communicate disproportionately via potent genetic signals imbued in the skin and hair, including racial, ethnic, health, gender, and age status. For the vast majority of us, age-related hair pigment loss becomes the inescapable signal of our disappearing youth. The hair follicle (HF) pigmentary unit is a wonderful tissue for studying mechanisms generally regulating aging, often before this becomes evident elsewhere in the body. Given that follicular melanocytes (unlike those in the epidermis) are regulated by the hair growth cycle, this cycle is likely to impact the process of aging in the HF pigmentary unit. The formal identification of melanocyte stem cells in the mouse skin has spurred a flurry of reports on the potential involvement of melanocyte stem cell depletion in hair graying (i.e., canities). Caution is recommended, however, against simple extrapolation of murine data to humans. Regardless, hair graying in both species is likely to involve an age-related imbalance in the tissue's oxidative stress handling that will impact not only melanogenesis but also melanocyte stem cell and melanocyte homeostasis and survival. There is some emerging evidence that the HF pigmentary unit may have regenerative potential, even after it has begun to produce white hair fibers. It may therefore be feasible to develop strategies to modulate some aging-associated changes to maintain melanin production for longer.
2

The cell biology of human hair follicle pigmentation.

Tobin, Desmond J. 10 November 2010 (has links)
No / Although we have made significant progress in understanding the regulation of the UVR-exposed epidermal-melanin unit, we know relatively little about how human hair follicle pigmentation is regulated. Progress has been hampered by gaps in our knowledge of the hair growth cycle’s controls, to which hair pigmentation appears tightly coupled. However, pigment cell researchers may have overly focused on the follicular melanocytes of the nocturnal and UVR-shy mouse as a proxy for human epidermal melanocytes. Here, I emphasize the epidermis-follicular melanocyte pluralism of human skin, as research models for vitiligo, alopecia areata and melanoma, personal care/cosmetics innovation. Further motivation could be in finding answers to why hair follicle and epidermal pigmentary units remain broadly distinct? Why melanomas tend to originate from epidermal rather than follicular melanocytes? Why multiple follicular melanocyte sub-populations exist? Why follicular melanocytes are more sensitive to aging influences? In this perspective, I attempt to raise the status of the human hair follicle melanocyte and highlight some species-specific issues involved which the general reader of the pigmentation literature (with its substantial mouse-based data) may not fully appreciate.

Page generated in 0.0483 seconds