• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamics of Vortices in Numerically Simulated Turbulent Channel Flow

January 2011 (has links)
abstract: The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which single hairpins autogenerate hairpin packets. The hairpin vortices are believed to provide a unified picture of wall turbulence and play an important role in the production of Reynolds shear stress which is directly related to turbulent drag. The structures of the initial three-dimensional vortices are extracted from the two-point spatial correlation of the fully turbulent direct numerical simulation of the velocity field by linear stochastic estimation and embedded in a mean flow having the profile of the fully turbulent flow. The Reynolds number of the present simulation is more than twice that of the Re-tau=180 flow from earlier literature and the conditional events used to define the stochastically estimated single vortex initial conditions include a number of new types of events such as quasi-streamwise vorticity and Q4 events. The effects of parameters like strength, asymmetry and position are evaluated and compared with existing results in the literature. This study then attempts to answer questions concerning how vortex mergers produce larger scale structures, a process that may contribute to the growth of length scale with increasing distance from the wall in turbulent wall flows. Multiple vortex interactions are studied in detail. / Dissertation/Thesis / M.S. Mechanical Engineering 2011
2

Experimental Study of Turbulent Flow over Inclined Ribs in Adverse Pressure Gradient

Tsikata, Jonathan Mawuli 20 December 2012 (has links)
This thesis is an experimental study of turbulent flows over smooth and rough walls in a channel that consists of an upstream parallel section to produce a fully developed channel flow and a diverging section to produce an adverse pressure gradient (APG) flow. The roughness elements used were two-dimensional square ribs of nominal height k = 3 mm. The ribs were secured to the lower wall of the channel and spaced to produce the following three pitches: 2k, 4k and 8k, corresponding to d-type, intermediate and k-type rough walls, respectively. For each rough wall type, the ribs were inclined at 90°, 45° and 30° to the approach flow. The velocity measurements were performed using a particle image velocimetry technique. The results showed that rib roughness enhanced the drag characteristics, and the degree of enhancement increased with increasing pitch. The level of turbulence production and Reynolds stresses were significantly increased by roughness beyond the roughness sublayer. It was observed that the population, sizes and the level of organization of hairpin vortices varied with roughness and more intense quadrant events were found over the smooth wall than the rough walls. APG reinforced wall roughness in augmenting the equivalent sand grain roughness height, turbulence production and Reynolds stresses. APG also reduced the sizes of the hairpin packets but strengthened the quadrant events in comparison to the results obtained in the parallel section. The secondary flow induced by inclined ribs significantly altered the distributions of the flow characteristics across the span of the channel. Generally, the mean flow was less uniform close to the trailing edge of the ribs compared to the flows at the mid-span and close to the leading edge of the ribs. The Reynolds stresses and hairpin packets were distinctly larger close to the trailing edge of the ribs. Rib inclination also decreased the drag characteristics and significantly modified the distributions of the Reynolds stresses and quadrant events. In the parallel section, the physical sizes of the hairpin packets were larger over 45° ribs whereas in the diverging section, the sizes were larger over perpendicular ribs.
3

Experimental Study of Turbulent Flow over Inclined Ribs in Adverse Pressure Gradient

Tsikata, Jonathan Mawuli 20 December 2012 (has links)
This thesis is an experimental study of turbulent flows over smooth and rough walls in a channel that consists of an upstream parallel section to produce a fully developed channel flow and a diverging section to produce an adverse pressure gradient (APG) flow. The roughness elements used were two-dimensional square ribs of nominal height k = 3 mm. The ribs were secured to the lower wall of the channel and spaced to produce the following three pitches: 2k, 4k and 8k, corresponding to d-type, intermediate and k-type rough walls, respectively. For each rough wall type, the ribs were inclined at 90°, 45° and 30° to the approach flow. The velocity measurements were performed using a particle image velocimetry technique. The results showed that rib roughness enhanced the drag characteristics, and the degree of enhancement increased with increasing pitch. The level of turbulence production and Reynolds stresses were significantly increased by roughness beyond the roughness sublayer. It was observed that the population, sizes and the level of organization of hairpin vortices varied with roughness and more intense quadrant events were found over the smooth wall than the rough walls. APG reinforced wall roughness in augmenting the equivalent sand grain roughness height, turbulence production and Reynolds stresses. APG also reduced the sizes of the hairpin packets but strengthened the quadrant events in comparison to the results obtained in the parallel section. The secondary flow induced by inclined ribs significantly altered the distributions of the flow characteristics across the span of the channel. Generally, the mean flow was less uniform close to the trailing edge of the ribs compared to the flows at the mid-span and close to the leading edge of the ribs. The Reynolds stresses and hairpin packets were distinctly larger close to the trailing edge of the ribs. Rib inclination also decreased the drag characteristics and significantly modified the distributions of the Reynolds stresses and quadrant events. In the parallel section, the physical sizes of the hairpin packets were larger over 45° ribs whereas in the diverging section, the sizes were larger over perpendicular ribs.

Page generated in 0.0589 seconds