• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum Mechanics on the Möbius Ring

Li, Zehao 29 March 2013 (has links)
Recent advances in the chemical vapor deposition method of growing graphene sheets suggest that graphene rings can grow. We may anticipate that chemical methods can be developed to construct twisted nano-ribbons to form Möbius structures in the very near future. I investigated the quantum mechanics of an electron constrained to motion on a nanoscale Möbius ring by solving the Schrdinger equation on the curved surface. The close analogy between ordinary cylindrical rings and Möbius rings is displayed by the closeness of their energy spectra. The expectation values for the angular momentum component L_z are shown to be close, but not exactly equal, to integral or half-integral multiples of hbar. The half-integer angular momentum states are present only for the nontrivial topology of Möbius rings. The effect of the curvature of the Möbius rings manifests itself in the level splitting. This can be understood in terms of representations of the discrete rotational groups C_nv. The nonzero variance of L_z will allow weak transitions between integral and half-integral angular momentum states, while preserving the unit angular momentum for photons. Again, since the topology of the system is critical for the Aharonov-Bohm effect, I investigated the AB effect on Möbius rings and found a remarkable pattern in transmission through finite-width 2D ring structures with finite-width input and output contacts attached at the periphery. The periodicity in the magnetic flux, in units of h/e, is weakly broken on 2D rings of finite width. The unusual states with half-integer values of observed on Möbius rings, investigated earlier, display a different characteristic in transmission. In view of the fascinating properties displayed by the non-trivial topology in terms of its novel two-dimensional physics, we expect that the properties of carriers on the Möbius ring that we have presented here will be relevant for practical applications.
2

Towards New Bounds for the 2-Edge Connected Spanning Subgraph Problem

Legault, Philippe January 2017 (has links)
Given a complete graph K_n = (V,E) with non-negative edge costs c ∈ R^E, the problem multi-2EC_cost is that of finding a 2-edge connected spanning multi-subgraph of K_n with minimum cost. It is believed that there are no efficient ways to solve the problem exactly, as it is NP-hard. Methods such as approximation algorithms, which rely on lower bounds like the linear programming relaxation multi-2EC^LP of multi-2EC , thus become vital cost cost to obtain solutions guaranteed to be close to the optimal in a fast manner. In this thesis, we focus on the integrality gap αmulti-2EC of multi-2EC^LP , which is a measure of the quality of multi-2EC^LP as a lower bound. Although we currently only know cost that 6/5 ≤ αmulti-2EC_cost ≤ 3 , the integrality gap for multi-2EC_cost has been conjectured to be 6/5. We explore the idea of using the structure of solutions for αmulti-2EC_cost and the concept of convex combination to obtain improved bounds for αmulti-2EC_cost. We focus our efforts on a family J of half-integer solutions that appear to give the largest integrality gap for multi-2EC_cost. We successfully show that the conjecture αmulti-2EC_cost = 6/5 is true for any cost functions optimized by some x∗ ∈ J. We also study the related problem 2EC_size, which consists of finding the minimum size 2-edge connected spanning subgraph of a 2-edge connected graph. The problem is NP-hard even at its simplest, when restricted to cubic 3-edge connected graphs. We study that case in the hope of finding a more general method, and we show that every 3-edge connected cubic graph G = (V ′, E′), with n = |V ′| allows a 2EC_size solution for G of size at most 7n/6 This improves upon Boyd, Iwata and Takazawa’s guarantee of 6n/5 and extend Takazawa’s 7n/6 guarantee for bipartite cubic 3-edge connected graphs to all cubic 3-edge connected graphs.
3

Probing and modeling of optical resonances in rolled-up structures

Li, Shilong 30 January 2015 (has links) (PDF)
Optical microcavities (OMs) are receiving increasing attention owing to their potential applications ranging from cavity quantum electrodynamics, optical detection to photonic devices. Recently, rolled-up structures have been demonstrated as OMs which have gained considerable attention owing to their excellent customizability. To fully exploit this customizability, asymmetric and topological rolled-up OMs are proposed and investigated in addition to conventional rolled-up OMs in this thesis. By doing so, novel phenomena and applications are demonstrated in OMs. The fabrication of conventional rolled-up OMs is presented in details. Then, dynamic mode tuning by a near-field probe is performed on a conventional rolled-up OM. Next, mode splitting in rolled-up OMs is investigated. The effect of single nanoparticles on mode splitting in a rolled-up OM is studied. Because of a non-synchronized oscillating shift for different azimuthal split modes induced by a single nanoparticle at different positions, the position of the nanoparticle can be determined on the rolled-up OM. Moreover, asymmetric rolled-up OMs are fabricated for the purpose of introducing coupling between spin and orbital angular momenta (SOC) of light into OMs. Elliptically polarized modes are observed due to the SOC of light. Modes with an elliptical polarization can also be modeled as coupling between the linearly polarized TE and TM mode in asymmetric rolled-up OMs. Furthermore, by adding a helical geometry to rolled-up structures, Berry phase of light is introduced into OMs. A -π Berry phase is generated for light in topological rolled-up OMs so that modes have a half-integer number of wavelengths. In order to obtain a deeper understanding for existing rolled-up OMs and to develop the new type of rolled-up OMs, complete theoretical models are also presented in this thesis.
4

Probing and modeling of optical resonances in rolled-up structures

Li, Shilong 22 January 2015 (has links)
Optical microcavities (OMs) are receiving increasing attention owing to their potential applications ranging from cavity quantum electrodynamics, optical detection to photonic devices. Recently, rolled-up structures have been demonstrated as OMs which have gained considerable attention owing to their excellent customizability. To fully exploit this customizability, asymmetric and topological rolled-up OMs are proposed and investigated in addition to conventional rolled-up OMs in this thesis. By doing so, novel phenomena and applications are demonstrated in OMs. The fabrication of conventional rolled-up OMs is presented in details. Then, dynamic mode tuning by a near-field probe is performed on a conventional rolled-up OM. Next, mode splitting in rolled-up OMs is investigated. The effect of single nanoparticles on mode splitting in a rolled-up OM is studied. Because of a non-synchronized oscillating shift for different azimuthal split modes induced by a single nanoparticle at different positions, the position of the nanoparticle can be determined on the rolled-up OM. Moreover, asymmetric rolled-up OMs are fabricated for the purpose of introducing coupling between spin and orbital angular momenta (SOC) of light into OMs. Elliptically polarized modes are observed due to the SOC of light. Modes with an elliptical polarization can also be modeled as coupling between the linearly polarized TE and TM mode in asymmetric rolled-up OMs. Furthermore, by adding a helical geometry to rolled-up structures, Berry phase of light is introduced into OMs. A -π Berry phase is generated for light in topological rolled-up OMs so that modes have a half-integer number of wavelengths. In order to obtain a deeper understanding for existing rolled-up OMs and to develop the new type of rolled-up OMs, complete theoretical models are also presented in this thesis.

Page generated in 0.0382 seconds