• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Growth of the South African abalone (Haliotis Midae) on three diets, under commercial conditions

Makhande, Emmanuel Denis January 2008 (has links)
Haliotis midae is the cornerstone of the South African abalone fishery. For more than a decade, the wild abalone stock of South Africa has suffered decline due to over-exploitation and illegal activities such as poaching. Prior to 1970, no regulations were in place concerning the annual landings. As a result the fishery was exploited as if it were an infinite resource. It is this initial uncontrolled harvesting (regardless of age) and poaching that has driven the abalone resource decline. Due to the slow growth rate exhibited by abalone as a species, natural replenishment of wild stock following exploitation and poaching was far below the rate of exploitation of this resource. Studies on the growth of abalone have mainly been conducted under laboratory conditions. The purpose of this study was to measure the growth of abalone, fed different diets, under commercial culture conditions. Three food types were used namely; commercial pellets, seaweed (Ulva spp.) and dried kelp bars (Ecklonia maxima). Four diets were obtained from the three food types namely; combination of commercial pellets and seaweed (Diet A), commercial pellets only (Diet B), seaweed only (Diet C) and dried kelp bars only (Diet D). The food types used in this study represent both artificial (Commercial pellets) and natural feeds (seaweed and kelp) used in commercial abalone culture. The growth of two cohorts (40-50 mm and 50-60 mm) was followed over a 426 day period, with data for the first 183 days being used for statistical analysis to determine performance of a given diet. The best growth rates were found in abalone fed Diet A (40-50 mm: 2.64 mm.month-1; 50-60 mm 2.78: mm.month-1) and B (40-50 mm: 2.20 mm.month-1; 50-60 mm: 2.35: mm.month-1). These (Diets A and B) gave higher growth rates when compared to Diets C and D (natural diets), whose growth rates ranged between 0.50 mm.month-1 and 1.71 mm.month-1 for both cohorts. Also observed in this study was that, the mixture of formulated diet and seaweed gave better growth than formulated diet given exclusively.
2

The protein and energy requirements of the South African abalone, Haliotis midae

Green, Alistair John January 2009 (has links)
The abalone (Haliotis midae) culture industry in South Africa is becoming increasingly dependent on the use of formulated feeds, due to limitations in the supply of kelp. The bulk of the feeds that are currently available were developed based on the requirements of juvenile abalone cultured within the optimal temperature range for growth (18 - 20 °C). However, most abalone farming facilities are land-based pump ashore operations and are thus mostly exposed to temperatures outside of this range. In addition, these feeds have been found to be unsuitable for abalone cultured at elevated water temperatures (> 20°C). The aim of the study was to develop size and temperature specific diets for H midoe through optimisation of dietary protein, energy and lipid levels. Abalone were cultured under farm-like conditions in three partially recirculating temperature controlled systems at either 18, 22 or 24°C and fed formulated diets containing graded levels of protein (18,22 and 26 %) and energy (11.6, 13.5 and 16.2 MJ.kg·I ). Abalone were stocked into baskets at 5 % of available of surface area (n=36) and each diet (n=9) was fed to four baskets of abalone at each of the three temperature regimes for ten weeks. Abalone growth was temperature dependent, with growth declining from 4.33 g.month-I for abalone cultured at 18°C to 0.77 g.month-I at 24°C. Dietary protein could be reduced from 26 to 18 % provided dietary energy levels were maintained at 13.5 MJ.kg- l • A dietary energy level of 11.6 MJ.kg-1 was insufficient to meet the energetic requirements of H midae regardless of the protein content of the diet. The effects of water temperature and body size on the protein requirements of H midae were investigated by culturing abalone at temperatures within the optimal range for abalone farming (i.e. 14, 16 and 18°C). Three size classes of abalone (15, 50 and 80 mm) were fed formulated feed containing graded levels of dietary protein (20, 26, 32, 38 and 44 %) under controlled laboratory conditions for 12 weeks, and, in a separate experiment, under commercial farm conditions for 24 weeks. It was not possible to convincingly define the optimal protein levels for abalone of different sizes in this experiment because growth rates fell below average commercial growth rates obtained on farms. Growth was temperature dependent in the laboratory trial, with the rate of weight gain of the 15 mm (ANOV A: p=0.002) and 50 mm abalone (ANOV A: p=0.02) increasing significantly with an increase in temperature from 14 to 18°C. In the farm trial, dietary protein content did not affect the growth rate of the 10-15 or 80 mm abalone (ANOVA: p>0.05), however, the 50 mm abalone displayed significantly higher weight gain on the 32 % (4.72±0.20 g.month-I ) and 38 % (5.01±0.34 g.month-I ) protein diets compared to those fed the 20 % protein diet (3.75±0.13 g.month-I ) (ANOVA: p=O.OI). Although definition of optimal dietary protein levels were not possible, the effects of dietary protein content and water temperature on the growth of H midae were independent signifying that the protein requirements of abalone are temperature independent. In addition, there was no evidence to indicate that abalone of the different sizes tested here had different dietary protein requirements. The size specific dietary lipid and protein requirements of H midae were investigated by feeding two size classes of abalone (30 and 60 mm initial shell length) diets containing graded levels of dietary lipid (4, 7, 10, 13 and 16 %) and protein (34 - 39 %) for 12 weeks. The 30 and 60 mm abalone were stocked at 7 (n=200) and 9 % (n=36) of the available basket surface area respectively and each diet was fed to four baskets of abalone of each size class. The protein requirements of H. midae are influenced by the amount of available dietary energy and thus it is possible that the ability of abalone to utilise lipids as a source of energy differs in the presence of varying levels of dietary protein. High levels of dietary lipid negatively affected the growth, condition factor and soft tissue glycogen content of both size classes of abalone. This negative effect was greater in the 30 mm size class compared to the 60 mm abalone. The corresponding increase in feed consumption and feed conversion ratio in response to increasing levels of dietary protein also provides evidence that abalone are unable to utilise dietary lipids as an energy source and high levels of dietary lipid probably inhibit the uptake of carbohydrates and protein. High dietary lipid levels did however appear to promote gonad maturation. It was possible to reduce dietary protein from 34 to 20 % without negatively affecting growth through the maintenance of dietary energy levels and thus it is recommended that future experiments on the energy content of formulated feeds should focus on the improved use of carbohydrates. Reductions in the protein portion of formulated feeds for H. midae are possible provided the diet contains sufficient levels of energy supplied from carbohydrates. As the ability of abalone to utilise dietary lipid is limited, lipids are unlikely to play a significant role as an energy source in abalone feeds. Further investigations should focus on the utilisation of various carbohydrate sources in abalone feeds.
3

Towards understanding the effects of stocking density on farmed South African abalone, Haliotis Midae / Towards understanding stocking density of farmed South African abalone Haliotis midae

Nicholson, Gareth Hurst January 2014 (has links)
The profitability of abalone farms is heavily influenced by their production per unit of grow-out space. With farms having physically expanded to the maximum, and with increasing production costs, one of the most realistic ways for farms to increase their production is through optimizing stocking densities. The effect of stocking density on Haliotis midae performance is undocumented and optimal stocking densities for this species have not been determined. Experiments were conducted under farm conditions to investigate the effects of four different stocking densities (16 %, 20 %, 22 % and 24 % of available surface area) on growth, production and health of three different size classes of abalone (15-35 g, 45-65 g, and 70-90 g start weight). Each treatment was replicated four times and trials ran over a period of eight months with measurements being made at four month intervals. Abalone behaviour was observed during the trials in the experimental tanks. Weight gain per abalone decreased with an increase in density for all tested size classes (5.04 ± 0.18 to 2.38 ± 0.17; 5.35 ± 0.21 to 4.62 ± 0.29; 7.97 ± 0.37 to 6.53 ± 0.28 g.abalone-1.month-1 for the 15-35, 45-65 and 70-90 g classes respectively, with an increased density of 16 to 24 %). Individual weight gain of 15-35 g abalone was similar at stocking densities of 16 % and 20 % while weight gain of 45-65 g and 70-90 g abalone decreased when density was increased above 16 %. Biomass gain (kg.basket-1.month-1) was not affected by stocking density in the 15-35 g and 45-65 g size classes (1.29 ± 0.02 and 0.97 ± 0.02 kg.basket-1.month-1 respectively). However, the biomass gained by baskets stocked with 70-90 g abalone increased with stocking density (1.08 ± 0.02 to 1.33 ± 0.02 kg.basket-1.month-1) with an increased density of 16 to 24 %) and did not appear to plateau within the tested density range (16 to 24 %). Food conversion ratio did not differ significantly between densities across all size classes. Stocking density did not have a significant effect on abalone condition factor or health indices. The proportion of abalone above the level of the feeder plate increased with density (7.26 ± 1.33 to 16.44 ± 1.33 with an increased density of 16 to 24 %). As a proportion of abalone situated in the area of the basket, the same proportions were situated on the walls above the feeder plate and on the feeder plate itself irrespective of stocking density (p > 0.05). Higher proportions of animals had restricted access to feed at higher stocking densities (p = 0.03). The amount of formulated feed available on the feeder plate did not differ between stocking densities throughout the night (p = 0.19). Individual abalone spent more time above the feeder plate at higher stocking densities (p < 0.05). The percentage of time above the feeder plate, spent on the walls of the basket and on the feeding surface was not significantly different at densities of 20 %, 22 % and 24 % (p > 0.05) but abalone stocked at 16 % spent a greater percentage of time above the feeder plate on the feeding surface (83.99 ± 6.26 %) than on the basket walls (16.01 ± 6.26 %). Stocking density did not affect the positioning of abalone within a basket during the day or at night. Different size H. midae are affected differently by increases in stocking density in terms of growth performance. Findings from this research may be implemented into farm management strategies to best suit production goals, whether in terms of biomass production or individual weight gain. The fundamental mechanisms resulting in reduced growth at higher densities are not well understood, however results from behaviour observations suggest that competition for preferred attachment space and feed availability are contributing to decreased growth rates. With knowledge of abalone behaviour at different densities, innovative tank designs may be established in order to counter the reduction in growth at higher densities.
4

The use of probiotics in the diet of farmed South African abalone Haliotis midae L

Maliza, Siyabonga January 2015 (has links)
Physiological stress in farmed abalone can lead to immunosuppression and increase the susceptibility to bacterial, viral and parasitic disease, often followed by mortality. Thus, handling and poor water quality can reduce farm production efficiency. Probiotics in aquaculture have been effective in a wide range of species in enhancing immunity, survival, improving feed utilisation and growth. Three putative probionts identified as a result of in vitro screening had been beneficial to laboratory-reared abalone in a previous study. The aim of this study was to produce an abalone feed that contains a suite of probionts that may promote abalone growth and health under farming conditions. The objectives were to compare growth and physiological responses (i.e., haemocyte and phagocytosis counts) of abalone fed a commercial feed (Abfeed®S 34, Marifeed, Hermanus) supplemented with probiotics (i.e., the probiotic diet) to abalone fed the commercial feed without probiotic supplementation as a control treatment in a factorial design with handling method as an independent variable. This experiment was conducted at HIK Abalone Farm (Pty Ltd) for a period of eight months with initial weight and length 36.1 ± 0.05 g and 58.6 ± 0.06 mm abalone-1. Another experiment was carried out at Roman Bay Sea Farm (Pty) Ltd with initial weight and length 34.7 ± 0.17 g and 62.3 ± 0.18 mm abalone-1, but this experiment included one factor only, i.e. the presence and absence of the probionts in the feed. At HIK there was no significant interaction between diet and handling on average length and weight gain month-1 after four (p=0.81 and p=0.32) and eight (p=0.51 and p=0.53) months, respectively. Average length (additional handling = 73.9 ± 0.52 mm, normal farm handling = 75.8 ± 0.57 mm) and weight gain (mean: additional handling = 68.5 ± 1.20 g, normal farm handling = 74.3 ± 1.86 g) increased significantly in animals that were handled under normal farm procedure and were either fed probiotic or control diet after eight months (p=0.03 and p=0.02, respectively). There was no iii difference in length gain or weight gain of abalone fed the probiotic diet and those fed the control diet (ANOVA: F(1,16)=0.04, p=0.84; F(1,16)=0.14, p=0.71, respectively). After four months phagocytotic count was significantly different between dietary treatments with mean values of 74.50 ± 10.52 and 63.52 ± 14.52 % phagocytosis count per sample for the probionts and control treatment, respectively (p=0.04), there was no difference after eight months at HIK Abalone Farm. There was no effect of stressor application (p=0.14) and no interaction between dietary treatment and stressor application for this variable i.e., phagocytosis count (p=0.61). There was no difference in feed conversion ratio between treatments with values ranging from 2.9 to 3.8. At Roman Bay Sea farm, there was no significant difference in mean length gain between abalone fed the probiotic and control diet after eight months (repeated measures ANOVA: F(4,28)=16.54. Mean weight gain of abalone fed the probiotic diet was significantly greater than those fed the control diet after eight months (repeated measures ANOVA: F(4,28)=39.82, p(0.00001). There was no significant difference in haemocyte counts between animals fed either probiotic or control diet after four and eight months at Roman Bay Sea farm (p>0.05).
5

Water quality dynamics in an experimental serial-use raceway and its effects on growth of South African abalone, Haliotis midae

Naylor, Matthew Aubrey January 2012 (has links)
An understanding of species specific water quality requirements is essential for efficient production of aquaculture products, an aspect not well documented for the land-based culture of the South African abalone, Haliotis midae. In order for the industry to remain competitive in international markets, efficient use of water supplies and the development of water reuse technology is needed. This study assessed the changes in water quality between tanks in a tiered serial-use raceway in relation to accumulated biomass and water flow and estimated the flow index (FI) (L h⁻¹ kg⁻¹) at which growth becomes significantly affected. The effect of dietary protein level, supplementation of pure oxygen and addition of sodium hydroxide (NaOH⁻) on water quality and fundamental production parameters in the serial-use raceways was also assessed. The serial-use raceways were used as a tool to create a range of water quality conditions at which the growth, feed conversion ratio (FCR) and condition factor (CF) of "cocktail" size (60 – 70 mm) H. midae could be monitored. The metabolic activity of the abalone resulted in a deterioration in water quality between tanks in series. pH (r² = 0.99; p < 0.001) and dissolved oxygen concentration (r² = 0.99; p < 0.001) were positively correlated with flow index (pH = 7.38 FI°·°² ; dissolved oxygen = 6.92 FI°·°⁴), while free ammonia nitrogen (FAN) (r² = 0.99, p < 0.001) and nitrite (NO²⁻ - N) (r² = 0.93, p < 0.001) were negatively correlated with flow index (FAN = 8.02 FI⁻°·⁷¹). Nitrite concentrations increased over time indicating colonisation of Nitrosomonas bacteria on the basket surfaces. A flow index of 7.2 – 9.0 L h⁻¹ kg⁻¹ was estimated as the minimum to avoid significant reductions in weight and shell length gain and increases in FCR values. Total ammonia nitrogen (TAN) and FAN concentrations were significantly correlated to dietary protein (P) (t = 6.63, p < 0.0001 and t = 6.41, p < 0.0001, respectively) and flow index (t = 5.42, p < 0.0001 and t = 3.9, p < 0.0002, respectively) and could be estimated using the models TAN = 9.73 P – 110.3 log (FI), and FAN = 0.132 P – 1.10 log (FI). Mean FAN concentrations were 67 and 41 % lower in tanks fed a diet containing 22 and 26 % protein respectively, when compared to tanks fed a 33 % protein diet. Supplementation with pure oxygen (103 ± 8 % saturation) improved shell length gain (t = 3.45, p = 0.026) in abalone exposed to high FAN (2.43 ± 1.1 μg L⁻¹) and low pH (7.6 ± 0.13), relative to a treatment with no oxygen supplementation (92 ± 6 % saturation). Addition of a sodium hydroxide solution resulted in elevated mean pH in treatment raceways when compared to control raceways. The increased pH resulted in significantly higher weight gain (g abalone⁻¹) (F₁·₁₂ = 4.51; p = 0.055) and shell length gain (mm abalone⁻¹) (F₁·₁₂ = 4.56; p = 0.054) at an α-error level of < 5.5 %. In two trials, weight gain and shell length gain were significantly correlated to pH (p < 0.001), and multiple regression of pH, dissolved oxygen and FAN consistently revealed pH to be the best predictor of growth. It is therefore suggested that decreasing pH is the first limiting water quality variable for abalone in serial-use raceways. As a decrease in water pH is linked to respiration by the abalone and subsequent increase in dissolved carbon dioxide (CO₂) concentration, future studies should examine the effects of CO₂ on H. midae metabolic rate, calcification rate and health. The results of this study will contribute toward our understanding of the specific water quality requirements for H. midae in commercial aquaculture systems, and influence the design and management procedures for abalone water reuse systems.
6

Growth and gonad size in cultured South African abalone, Haliotis midae

Riddin, Nicholas Alwyn January 2013 (has links)
According to farm records, cultured Haliotis midae (50-70 g.abalone⁻¹) were growing 10% slower in winter when compared to summer. This reduction in growth rate also coincided with enlarged gonads. Initial trials showed that there were differences in mean monthly growth rates ranging from 1.97 – 5.14 g abalone⁻¹ month⁻¹, and gonad bulk index (GBI) also varied between months (GBI range: 26.88 ± 12.87 to 51.03 ± 34.47). The investment of energy into gonad tissue growth did not compromise whole body growth as the abalone continued to gain weight throughout the reproductive periods, probably due to gonadal growth. Growth of this size class of abalone was not influenced by water temperature or day length, suggesting favourable on-farm culture conditions (regression analyses, p > 0.05). There is no need to implement a seasonal dietary regime. Cultured H. midae were fed artificial diets with different protein sources, including only soya, only fishmeal, a combination of soya and fishmeal, and these were compared to kelp-fed abalone. Kelp-fed abalone grew slower than those fed artificial feeds (p>0.05). Gonad growth was the greatest when soya meal was included in the diet (average GBI: 74.91 ± 23.31), while the average gonad size of abalone fed the fishmealbased diet had gonads which were 38% smaller, and kelp-fed abalone had gonads which were 75% smaller than those of the abalone fed on diets containing soya meal. The increased gonad mass in abalone fed on diets including soya meal could be attributed to phytoestrogenic activity, as a result of the presence of isoflavones found in the soya plant; this remains to be tested. The use of soya in brood stock diet development is advised. The influence of dietary protein to energy ratio (1.41 – 2.46 g MJ⁻¹) on growth and gonad size was tested. Protein and energy levels within the ranges tested (22 and 33% protein; 13.5 and 15.6 MJ kg⁻¹) did not interact to influence growth rates of cultured H. midae. GBI increased from 50.67 ± 4.16 to 83.93 ± 9.35 units as a function of dietary protein to energy ratio (y = 42.02 x⁰·⁸¹; r² = 0.19; regression analysis: F₁¸₃₈ = 8.9; p = 0.005). In addition, protein level influenced gonad size, with gonad growth being greater in abalone fed the high protein diet (factorial ANOVA: F₁¸₃₂ = 7.1, p = 0.012). Canning yields were reduced by 7% when the protein content was increased, while increasing the quantity of dietary energy improved canning yields by ~ 6% (one-way ANOVA: F₁¸₂₈ = 14.4, p= 0.001). The present study provided evidence that although growth rates are varying seasonally, reproductive investment is not hindering weight gain. Gonad growth can be influenced if desired by farms, depending on the level of soya inclusion, as well as the protein to energy ratio in the diet. Monthly variation in growth and gonad size, as well as the influence of diet on gonad growth were highlighted, and the implications for farm application and further research were discussed.
7

Effect of diet and sex-sorting on growth and gonad development in farmed South African abalone, Haliotis midae

Ayres, Devin William Philip January 2014 (has links)
Abalone, Haliotis midae, farmers in South Africa that feed formulated diets reported a periodic drop in abalone growth during periods of increased gonad development. A large drop in abalone biomass was noticed after presumed spawning events. This study was aimed to determine the effect of diet and sex-sorting on gonad development in abalone. Experiments were conducted on a commercial abalone farm from July 2012 to the end of June 2013. Isonitrogenous and isoenergetic diets were formulated with two protein sources. A fishmeal and soybean meal (S-diet) diet and a fishmeal only (F-diet) diet were fed to abalone (50 - 70 g abalone⁻¹) over 12 months. Weight and length gain, gonad bulk index (GBI), visceral index (%) and meat mass index (%) were determined monthly and seasonally. A histological study on the female gonads was conducted. This study also included an experiment to test the effect of sex-sorting (70 - 80 g abalone⁻¹) on growth and body composition with treatments including males (M), females (F) and equal numbers of males and females (MF). Weight gain and length gain were faster in S-diet-fed abalone (RM-ANOVA, F ₍₁, ₁₆₎ = 7.77, p = 0.01; F ₍₁, ₆₉₎ = 49.9, p < 0.001, respectively). Gonad development was significantly affected by the inclusion of soybean meal with S-diet-fed abalone showing higher GBI-values than F-diet-fed abalone (RM-ANOVA, F ₍₁, ₃₃)= 16.22, p = 0.0003). Male abalone had higher GBI-values than females (RM-ANOVA, F ₍₁, ₃₃₎ = 39.87, p < 0.0001). There was no significant difference in average feed conversion ratio (FCR) between diets over time (RM-ANOVA, F ₍₁, ₂₁₎ = 0.008, p = 0.97). However, average FCR-values were significantly highest between November 2012 and March 2013, the presumed spawning season. The visceral mass (gut and gonad) as a proportion of whole mass (visceral index, %) was significantly higher in abalone fed the S-diet (RM-ANOVA; F ₍₁, ₆₉₎ = 68.06, p < 0.0001). There was no difference in meat mass index (%) between diets for both male and female abalone (RM-ANOVA; F ₍₇, ₂₄₈₎ = 0.80, p = 0.60; F ₍₇, ₂₄₁₎ = 1.7, p = 0.11,respectively). Meat mass index significantly decreased from September 2012 to February 2013 coinciding with the period of high GBI-values. The distribution of oocyte maturity stages differed between diets. The majority of oocytes within S-diet-fed abalone were fully mature stage 8 oocytes compared to a majority of stage 7 oocytes in F-diet-fed abalone. Histology corroborated peaks in GBI-values for abalone fed both diets. There was no significant difference in growth, GBI, visceral index (%) and meat mass index (%) between abalone sorted into monosex and mixed-sex populations. Thus, the presence of the opposite sex did not have an effect on growth and gonad mass in H. midae. The phytoestrogens daidzin, glycitin, genistin, daidzein, glycitein and genistein were present in soybean meal and only traceable amounts were found in the F-diet. This study provided evidence that soybean meal present in formulated feed affected growth and gonad development in H.midae. The difference in the distribution of the maturity stages of oocytes was affected by diet. Sex-sorting abalone into monosex and mixed-sex populations had no influence on weight and length gain and gonad development.
8

A quantitative genetic analysis of the effect of crossbreeding on the growth rate of the South African abalone, Haliotis midae

Vorster, Gysbert 04 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2003. / ENGLISH ABSTRACT: The genetic status of H. midae broodstock in the South African aquaculture industry reflects that of random samples originating from undomesticated wild populations. The nature of growth in abalone is very slow, taking between three and four years to reach a marketable size of between 60 to 100 grams. It is therefore of paramount importance to improve this trait in order to ensure global competitiveness and economic viability within the industry. Improving this negative characteristic through conventional selection methods is a long-term venture and alternative means that would yield instantaneous results had to be considered. Crossbreeding was identified as an alternative, short-term strategy to improve growth rate. A crossbreeding experiment was performed between two populations of the abalone, Haliotis midae, from the East (E) and West (W) Coast of South Africa. This was done to investigate the occurrence of heterosis for growth among the crossbred genotypes (East x West, West x East). Fifteen males and females from both the East and the West Coast populations were mated in a complete dialelle crossbreeding experiment to produce four progeny groups (WW, EE, EW and WE). Progeny groups were evaluated for weight (bW) and length gain (bL) over a specific growth period of 9 months. The results provided no evidence of significant differences in weight (P = 0.085) or length gain (P = 0.244) between the four progeny groups, giving no indication of significant heterosis for weight and length gain among the crossbred progenies of these East and West Coast populations. It is recommended that further efforts to obtain improved growth rate in the abalone, Haliotis midae, through crossbreeding only be considered in light of clear evidence of substantial genetic differentiation between such populations. / AFRIKAANSE OPSOMMING: Die huidige status van perlemoen, soos dit voorkom in akwakultuur bedrywighede in Suid Afrika, weerspieël dié van ‘n ewekansige monster vanuit wilde, natuurlike populasies. Perlemoen is inherent ‘n stadig groeiende organisme wat tussen drie en vier jaar neem om tot ‘n bemarkbare grote van 60 tot 100 gram te groei. Dit is dus uiters noodsaaklik om hierdie eienskap te verbeter ten einde die bedryf ekonomies lewensvatbaar en mededingend op wêreld markte te maak. Konvensionele seleksie as ‘n metode om hierdie negatiewe eienskap te verbeter is ‘n langtermyn onderneming wat die identifisering van ‘n korttermyn metode, wat ondmiddellike resultate lewer, noodsaak. Kruisteelt is geïdentifiseer as geskikte korttermyn oplossing aangesien dit onmiddellike resultate lewer. ‘n Kruisteel eksperiment is uitgevoer tussen twee populasies van die perlemoen, Haliotis midae, van die Ooskus (E = East) en die Weskus (W = West) van Suid Afrika. Dit is gedoen om die omvang van heterose vir groeitempo in die gekruisde nageslag (East x West, West x East) te bepaal. Fyftien mannetjies en wyfies van beide die Oos- en Weskus populasies is met mekaar gepaar in ‘n volledige dialleel kruising om vier nageslag groepe (WW, EE, EW en WE) te vorm. Die nageslag is geëvalueer ten opsigte van massa (bW) en lengte (bL) toename oor ‘n spesifieke groei tydperk van 9 maande. Die eksperimentele resultate dui daarop dat die vier nageslag groepe nie betekenisvol van mekaar verskil het ten opsigte van massa (P = 0.085) en lengte (P = 0.244) toename nie en dat daar dus geen aanduiding van heterose vir massa en lengte toename in die nageslag van kruisings tussen die Ooskus en Weskus populasies bestaan nie. Daar word aanbeveel dat kruisteling as ‘n metode van genetiese verbetering van groeitempo in Haliotis midae slegs oorweeg word in die lig van nuwe molekulêre bewyse van genoegsame genetiese differensiasie tussen sulke populasies.

Page generated in 0.0541 seconds