• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Semi analytical simulations of primordial star cluster formation

Santoro, Fernando January 2003 (has links)
No description available.
2

Gravitational dynamics of halo formation in a collisional versus collisionless cold dark matter universe

Koda, Jun, 1979- 25 January 2011 (has links)
Flat cosmology with collisionless cold dark matter (CDM) and cosmological constant ([Lambda]CDM cosmology) may have some problems on small scales, even though it has been very successful on large scales. We study the effect of Self-Interacting Dark Matter (SIDM) hypothesis on the density profiles of halos. Collisionless CDM predicts cuspy density profiles toward the center, while observations of low mass galaxies prefer cored profiles. SIDM was proposed by Spergel & Steinhardt [161] as a possible solution to this cuspy profile problem on low-mass scales. On the other hand, observations and collisionless CDM agree on mass scales of galaxy clusters. It is also known that the SIDM hypothesis would contradict with X-ray and gravitational lensing observations of cluster of galaxies, if the cross section were too large. Our final goal is to find the range of SIDM scattering cross section models that are consistent with those astrophysical observations in two different mass scales. There are two theoretical approaches to compute the effect of self-interacting scattering -- Gravitational N-body simulation with Monte Carlo scattering and conducting fluid model; those two approaches, however, had not been confirmed to agree with each other. We first show that two methods are in reasonable agreement with each other for both isolated halos and for halos with realistic mass assembly history in an expanding [Lambda]CDM universe; the value of cross section necessary to have a maximally relaxed low-density core in [Lambda]CDM is in mutual agreement. We then develop a semianalytic model that predicts the time evolution of SIDM halo. Our semianalytic relaxation model enables us to understand how a SIDM halo would relax to a cored profile, and obtain an ensemble of SIDM halos from collisionless simulations with reasonable computational resources. We apply the semianalytic relaxation model to CDM halos, and compare the resulting statistical distribution of SIDM halos with astrophysical observations. We show that there exists a range of scattering cross sections that simultaneously solve the cuspy core problem on low-mass scales and satisfy the galaxy cluster observations. We also present that other potential conflicts between [Lambda]CDM and observations could be resolved in Part II and III. / text
3

Termalização de feixes não-neutros ultra-intensos sob confinamento solenoidal em canais lineares

Nunes, Roger Pizzato January 2008 (has links)
As aplicações envolvendo confinamento e aceleração de feixes de partículas carregadas em canais lineares são inúmeras em diversas áreas do conhecimento. A evolução da engenharia dos aceleradores lineares de partículas de próxima geração está fortemente condicionada ao melhor entendimento de fenômenos não-lineares como a formação de halo, inerentes aos atualmente cada vez mais perscrutados regimes de alta densidade de carga e energia. O presente trabalho visa investigar e caracterizar os aspectos dinâmicos e de equilíbrio envolvidos na transição de um feixe ultra-intenso de partículas com mesma carga de um estado inicial não-estacionário para um final estacionário. A alta densidade de partículas implica que as forças repulsivas naturais neste tipo de sistema sejam imprescindíveis para a sua correta descrição. O feixe em questão evolui em um canal linear encapsulado por um duto circular condutor e é focalizado por um campo magnético constante axial de origem solenoidal. Tal feixe inicialmente encontra-se perfeitamente alinhado com o eixo de simetria do sistema de confinamento magnético, sendo, portanto, as oscilações de sua centróide inexistentes. Por simplicidade, foi imposto também ao feixe o vínculo de simetria azimutal. Como condição inicial, considerou-se o estado não-estacionário do feixe descrito por uma densidade homogênea e outra não-homogênea. No primeiro caso, o descasamento e, no segundo, a magnitude da não-homogeneidade são os fatores precursores da instabilidade inicial que conduz o feixe ao estado de equilíbrio. Para ambos os casos, modelos foram desenvolvidos para determinar quantidades dinâmicas, relacionadas à escala de tempo característica da instabilidade inicial, e de equilíbrio, tais como a emitância e o envelope, grandezas estatísticas estas usualmente de interesse em Física de Feixes. Os resultados obtidos foram comparados com simulações numéricas autoconsistentes e o acordo foi satisfatório. Os modelos demonstraram-se eficientes não somente em prever tais quantidades de interesse como também em elucidar aspectos físicos fundamentais intrínsecos ao comportamento observado nas simulações numéricas autoconsistentes e experimentos. / Applications involving confinement and acceleration of charged particle beams in linear channels are innumerous in many fields of the knowledge. The engineering evolution of next-generation particle linear accelerators is strongly conditioned to the better understanding of nonlinear phenomena like halo formation, inherent to the more and more currently explored regimes of high charge density and energy. The present work aims at investigating and characterizing dynamical and equilibrium aspects involved in the transition of a high-intensity beam of charged particles from an initial non-stationary state to a final stationary state. High particle densities mean that the repulsive forces naturally present in these kinds of systems are essential to their adequate description. The beam under analysis evolves inside a linear channel encapsulated by a circular conductor pipe, and is focalized by a constant axial magnetic field generated by solenoids. Such beam is initially perfectly aligned to the symmetry axis of the magnetic confinement system, being in this way its centroid oscillations non-existent. For simplicity, it has been imposed to the beam the constraint of azimuthal symmetry. As initial condition, the beam non-stationary state has been described by a homogeneous and an inhomogeneous particle density. In the first case, the mismatch and, in the second one, the magnitude of inhomogeneity, are the factors forerunner of the initial instability, which leads the beam to evolve to the equilibrium state. For both cases, models have been developed to determine dynamical quantities, related to the characteristic time scale of the initial instability, and equilibrium quantities, such as the emittance and envelope, usually of interest in Beam Physics. The obtained results have been compared with full self-consistent N-particle beam numerical simulations and the agreement has been reasonable. The models have shown to be efficient not only to predict beam quantities of interest as well as to elucidate fundamental physical aspects intrinsic to the behavior observed in the self-consistent numerical simulations and experiments.
4

Termalização de feixes não-neutros ultra-intensos sob confinamento solenoidal em canais lineares

Nunes, Roger Pizzato January 2008 (has links)
As aplicações envolvendo confinamento e aceleração de feixes de partículas carregadas em canais lineares são inúmeras em diversas áreas do conhecimento. A evolução da engenharia dos aceleradores lineares de partículas de próxima geração está fortemente condicionada ao melhor entendimento de fenômenos não-lineares como a formação de halo, inerentes aos atualmente cada vez mais perscrutados regimes de alta densidade de carga e energia. O presente trabalho visa investigar e caracterizar os aspectos dinâmicos e de equilíbrio envolvidos na transição de um feixe ultra-intenso de partículas com mesma carga de um estado inicial não-estacionário para um final estacionário. A alta densidade de partículas implica que as forças repulsivas naturais neste tipo de sistema sejam imprescindíveis para a sua correta descrição. O feixe em questão evolui em um canal linear encapsulado por um duto circular condutor e é focalizado por um campo magnético constante axial de origem solenoidal. Tal feixe inicialmente encontra-se perfeitamente alinhado com o eixo de simetria do sistema de confinamento magnético, sendo, portanto, as oscilações de sua centróide inexistentes. Por simplicidade, foi imposto também ao feixe o vínculo de simetria azimutal. Como condição inicial, considerou-se o estado não-estacionário do feixe descrito por uma densidade homogênea e outra não-homogênea. No primeiro caso, o descasamento e, no segundo, a magnitude da não-homogeneidade são os fatores precursores da instabilidade inicial que conduz o feixe ao estado de equilíbrio. Para ambos os casos, modelos foram desenvolvidos para determinar quantidades dinâmicas, relacionadas à escala de tempo característica da instabilidade inicial, e de equilíbrio, tais como a emitância e o envelope, grandezas estatísticas estas usualmente de interesse em Física de Feixes. Os resultados obtidos foram comparados com simulações numéricas autoconsistentes e o acordo foi satisfatório. Os modelos demonstraram-se eficientes não somente em prever tais quantidades de interesse como também em elucidar aspectos físicos fundamentais intrínsecos ao comportamento observado nas simulações numéricas autoconsistentes e experimentos. / Applications involving confinement and acceleration of charged particle beams in linear channels are innumerous in many fields of the knowledge. The engineering evolution of next-generation particle linear accelerators is strongly conditioned to the better understanding of nonlinear phenomena like halo formation, inherent to the more and more currently explored regimes of high charge density and energy. The present work aims at investigating and characterizing dynamical and equilibrium aspects involved in the transition of a high-intensity beam of charged particles from an initial non-stationary state to a final stationary state. High particle densities mean that the repulsive forces naturally present in these kinds of systems are essential to their adequate description. The beam under analysis evolves inside a linear channel encapsulated by a circular conductor pipe, and is focalized by a constant axial magnetic field generated by solenoids. Such beam is initially perfectly aligned to the symmetry axis of the magnetic confinement system, being in this way its centroid oscillations non-existent. For simplicity, it has been imposed to the beam the constraint of azimuthal symmetry. As initial condition, the beam non-stationary state has been described by a homogeneous and an inhomogeneous particle density. In the first case, the mismatch and, in the second one, the magnitude of inhomogeneity, are the factors forerunner of the initial instability, which leads the beam to evolve to the equilibrium state. For both cases, models have been developed to determine dynamical quantities, related to the characteristic time scale of the initial instability, and equilibrium quantities, such as the emittance and envelope, usually of interest in Beam Physics. The obtained results have been compared with full self-consistent N-particle beam numerical simulations and the agreement has been reasonable. The models have shown to be efficient not only to predict beam quantities of interest as well as to elucidate fundamental physical aspects intrinsic to the behavior observed in the self-consistent numerical simulations and experiments.
5

Termalização de feixes não-neutros ultra-intensos sob confinamento solenoidal em canais lineares

Nunes, Roger Pizzato January 2008 (has links)
As aplicações envolvendo confinamento e aceleração de feixes de partículas carregadas em canais lineares são inúmeras em diversas áreas do conhecimento. A evolução da engenharia dos aceleradores lineares de partículas de próxima geração está fortemente condicionada ao melhor entendimento de fenômenos não-lineares como a formação de halo, inerentes aos atualmente cada vez mais perscrutados regimes de alta densidade de carga e energia. O presente trabalho visa investigar e caracterizar os aspectos dinâmicos e de equilíbrio envolvidos na transição de um feixe ultra-intenso de partículas com mesma carga de um estado inicial não-estacionário para um final estacionário. A alta densidade de partículas implica que as forças repulsivas naturais neste tipo de sistema sejam imprescindíveis para a sua correta descrição. O feixe em questão evolui em um canal linear encapsulado por um duto circular condutor e é focalizado por um campo magnético constante axial de origem solenoidal. Tal feixe inicialmente encontra-se perfeitamente alinhado com o eixo de simetria do sistema de confinamento magnético, sendo, portanto, as oscilações de sua centróide inexistentes. Por simplicidade, foi imposto também ao feixe o vínculo de simetria azimutal. Como condição inicial, considerou-se o estado não-estacionário do feixe descrito por uma densidade homogênea e outra não-homogênea. No primeiro caso, o descasamento e, no segundo, a magnitude da não-homogeneidade são os fatores precursores da instabilidade inicial que conduz o feixe ao estado de equilíbrio. Para ambos os casos, modelos foram desenvolvidos para determinar quantidades dinâmicas, relacionadas à escala de tempo característica da instabilidade inicial, e de equilíbrio, tais como a emitância e o envelope, grandezas estatísticas estas usualmente de interesse em Física de Feixes. Os resultados obtidos foram comparados com simulações numéricas autoconsistentes e o acordo foi satisfatório. Os modelos demonstraram-se eficientes não somente em prever tais quantidades de interesse como também em elucidar aspectos físicos fundamentais intrínsecos ao comportamento observado nas simulações numéricas autoconsistentes e experimentos. / Applications involving confinement and acceleration of charged particle beams in linear channels are innumerous in many fields of the knowledge. The engineering evolution of next-generation particle linear accelerators is strongly conditioned to the better understanding of nonlinear phenomena like halo formation, inherent to the more and more currently explored regimes of high charge density and energy. The present work aims at investigating and characterizing dynamical and equilibrium aspects involved in the transition of a high-intensity beam of charged particles from an initial non-stationary state to a final stationary state. High particle densities mean that the repulsive forces naturally present in these kinds of systems are essential to their adequate description. The beam under analysis evolves inside a linear channel encapsulated by a circular conductor pipe, and is focalized by a constant axial magnetic field generated by solenoids. Such beam is initially perfectly aligned to the symmetry axis of the magnetic confinement system, being in this way its centroid oscillations non-existent. For simplicity, it has been imposed to the beam the constraint of azimuthal symmetry. As initial condition, the beam non-stationary state has been described by a homogeneous and an inhomogeneous particle density. In the first case, the mismatch and, in the second one, the magnitude of inhomogeneity, are the factors forerunner of the initial instability, which leads the beam to evolve to the equilibrium state. For both cases, models have been developed to determine dynamical quantities, related to the characteristic time scale of the initial instability, and equilibrium quantities, such as the emittance and envelope, usually of interest in Beam Physics. The obtained results have been compared with full self-consistent N-particle beam numerical simulations and the agreement has been reasonable. The models have shown to be efficient not only to predict beam quantities of interest as well as to elucidate fundamental physical aspects intrinsic to the behavior observed in the self-consistent numerical simulations and experiments.

Page generated in 0.1843 seconds