• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Termalização de feixes não-neutros ultra-intensos sob confinamento solenoidal em canais lineares

Nunes, Roger Pizzato January 2008 (has links)
As aplicações envolvendo confinamento e aceleração de feixes de partículas carregadas em canais lineares são inúmeras em diversas áreas do conhecimento. A evolução da engenharia dos aceleradores lineares de partículas de próxima geração está fortemente condicionada ao melhor entendimento de fenômenos não-lineares como a formação de halo, inerentes aos atualmente cada vez mais perscrutados regimes de alta densidade de carga e energia. O presente trabalho visa investigar e caracterizar os aspectos dinâmicos e de equilíbrio envolvidos na transição de um feixe ultra-intenso de partículas com mesma carga de um estado inicial não-estacionário para um final estacionário. A alta densidade de partículas implica que as forças repulsivas naturais neste tipo de sistema sejam imprescindíveis para a sua correta descrição. O feixe em questão evolui em um canal linear encapsulado por um duto circular condutor e é focalizado por um campo magnético constante axial de origem solenoidal. Tal feixe inicialmente encontra-se perfeitamente alinhado com o eixo de simetria do sistema de confinamento magnético, sendo, portanto, as oscilações de sua centróide inexistentes. Por simplicidade, foi imposto também ao feixe o vínculo de simetria azimutal. Como condição inicial, considerou-se o estado não-estacionário do feixe descrito por uma densidade homogênea e outra não-homogênea. No primeiro caso, o descasamento e, no segundo, a magnitude da não-homogeneidade são os fatores precursores da instabilidade inicial que conduz o feixe ao estado de equilíbrio. Para ambos os casos, modelos foram desenvolvidos para determinar quantidades dinâmicas, relacionadas à escala de tempo característica da instabilidade inicial, e de equilíbrio, tais como a emitância e o envelope, grandezas estatísticas estas usualmente de interesse em Física de Feixes. Os resultados obtidos foram comparados com simulações numéricas autoconsistentes e o acordo foi satisfatório. Os modelos demonstraram-se eficientes não somente em prever tais quantidades de interesse como também em elucidar aspectos físicos fundamentais intrínsecos ao comportamento observado nas simulações numéricas autoconsistentes e experimentos. / Applications involving confinement and acceleration of charged particle beams in linear channels are innumerous in many fields of the knowledge. The engineering evolution of next-generation particle linear accelerators is strongly conditioned to the better understanding of nonlinear phenomena like halo formation, inherent to the more and more currently explored regimes of high charge density and energy. The present work aims at investigating and characterizing dynamical and equilibrium aspects involved in the transition of a high-intensity beam of charged particles from an initial non-stationary state to a final stationary state. High particle densities mean that the repulsive forces naturally present in these kinds of systems are essential to their adequate description. The beam under analysis evolves inside a linear channel encapsulated by a circular conductor pipe, and is focalized by a constant axial magnetic field generated by solenoids. Such beam is initially perfectly aligned to the symmetry axis of the magnetic confinement system, being in this way its centroid oscillations non-existent. For simplicity, it has been imposed to the beam the constraint of azimuthal symmetry. As initial condition, the beam non-stationary state has been described by a homogeneous and an inhomogeneous particle density. In the first case, the mismatch and, in the second one, the magnitude of inhomogeneity, are the factors forerunner of the initial instability, which leads the beam to evolve to the equilibrium state. For both cases, models have been developed to determine dynamical quantities, related to the characteristic time scale of the initial instability, and equilibrium quantities, such as the emittance and envelope, usually of interest in Beam Physics. The obtained results have been compared with full self-consistent N-particle beam numerical simulations and the agreement has been reasonable. The models have shown to be efficient not only to predict beam quantities of interest as well as to elucidate fundamental physical aspects intrinsic to the behavior observed in the self-consistent numerical simulations and experiments.
2

Termalização de feixes não-neutros ultra-intensos sob confinamento solenoidal em canais lineares

Nunes, Roger Pizzato January 2008 (has links)
As aplicações envolvendo confinamento e aceleração de feixes de partículas carregadas em canais lineares são inúmeras em diversas áreas do conhecimento. A evolução da engenharia dos aceleradores lineares de partículas de próxima geração está fortemente condicionada ao melhor entendimento de fenômenos não-lineares como a formação de halo, inerentes aos atualmente cada vez mais perscrutados regimes de alta densidade de carga e energia. O presente trabalho visa investigar e caracterizar os aspectos dinâmicos e de equilíbrio envolvidos na transição de um feixe ultra-intenso de partículas com mesma carga de um estado inicial não-estacionário para um final estacionário. A alta densidade de partículas implica que as forças repulsivas naturais neste tipo de sistema sejam imprescindíveis para a sua correta descrição. O feixe em questão evolui em um canal linear encapsulado por um duto circular condutor e é focalizado por um campo magnético constante axial de origem solenoidal. Tal feixe inicialmente encontra-se perfeitamente alinhado com o eixo de simetria do sistema de confinamento magnético, sendo, portanto, as oscilações de sua centróide inexistentes. Por simplicidade, foi imposto também ao feixe o vínculo de simetria azimutal. Como condição inicial, considerou-se o estado não-estacionário do feixe descrito por uma densidade homogênea e outra não-homogênea. No primeiro caso, o descasamento e, no segundo, a magnitude da não-homogeneidade são os fatores precursores da instabilidade inicial que conduz o feixe ao estado de equilíbrio. Para ambos os casos, modelos foram desenvolvidos para determinar quantidades dinâmicas, relacionadas à escala de tempo característica da instabilidade inicial, e de equilíbrio, tais como a emitância e o envelope, grandezas estatísticas estas usualmente de interesse em Física de Feixes. Os resultados obtidos foram comparados com simulações numéricas autoconsistentes e o acordo foi satisfatório. Os modelos demonstraram-se eficientes não somente em prever tais quantidades de interesse como também em elucidar aspectos físicos fundamentais intrínsecos ao comportamento observado nas simulações numéricas autoconsistentes e experimentos. / Applications involving confinement and acceleration of charged particle beams in linear channels are innumerous in many fields of the knowledge. The engineering evolution of next-generation particle linear accelerators is strongly conditioned to the better understanding of nonlinear phenomena like halo formation, inherent to the more and more currently explored regimes of high charge density and energy. The present work aims at investigating and characterizing dynamical and equilibrium aspects involved in the transition of a high-intensity beam of charged particles from an initial non-stationary state to a final stationary state. High particle densities mean that the repulsive forces naturally present in these kinds of systems are essential to their adequate description. The beam under analysis evolves inside a linear channel encapsulated by a circular conductor pipe, and is focalized by a constant axial magnetic field generated by solenoids. Such beam is initially perfectly aligned to the symmetry axis of the magnetic confinement system, being in this way its centroid oscillations non-existent. For simplicity, it has been imposed to the beam the constraint of azimuthal symmetry. As initial condition, the beam non-stationary state has been described by a homogeneous and an inhomogeneous particle density. In the first case, the mismatch and, in the second one, the magnitude of inhomogeneity, are the factors forerunner of the initial instability, which leads the beam to evolve to the equilibrium state. For both cases, models have been developed to determine dynamical quantities, related to the characteristic time scale of the initial instability, and equilibrium quantities, such as the emittance and envelope, usually of interest in Beam Physics. The obtained results have been compared with full self-consistent N-particle beam numerical simulations and the agreement has been reasonable. The models have shown to be efficient not only to predict beam quantities of interest as well as to elucidate fundamental physical aspects intrinsic to the behavior observed in the self-consistent numerical simulations and experiments.
3

Termalização de feixes não-neutros ultra-intensos sob confinamento solenoidal em canais lineares

Nunes, Roger Pizzato January 2008 (has links)
As aplicações envolvendo confinamento e aceleração de feixes de partículas carregadas em canais lineares são inúmeras em diversas áreas do conhecimento. A evolução da engenharia dos aceleradores lineares de partículas de próxima geração está fortemente condicionada ao melhor entendimento de fenômenos não-lineares como a formação de halo, inerentes aos atualmente cada vez mais perscrutados regimes de alta densidade de carga e energia. O presente trabalho visa investigar e caracterizar os aspectos dinâmicos e de equilíbrio envolvidos na transição de um feixe ultra-intenso de partículas com mesma carga de um estado inicial não-estacionário para um final estacionário. A alta densidade de partículas implica que as forças repulsivas naturais neste tipo de sistema sejam imprescindíveis para a sua correta descrição. O feixe em questão evolui em um canal linear encapsulado por um duto circular condutor e é focalizado por um campo magnético constante axial de origem solenoidal. Tal feixe inicialmente encontra-se perfeitamente alinhado com o eixo de simetria do sistema de confinamento magnético, sendo, portanto, as oscilações de sua centróide inexistentes. Por simplicidade, foi imposto também ao feixe o vínculo de simetria azimutal. Como condição inicial, considerou-se o estado não-estacionário do feixe descrito por uma densidade homogênea e outra não-homogênea. No primeiro caso, o descasamento e, no segundo, a magnitude da não-homogeneidade são os fatores precursores da instabilidade inicial que conduz o feixe ao estado de equilíbrio. Para ambos os casos, modelos foram desenvolvidos para determinar quantidades dinâmicas, relacionadas à escala de tempo característica da instabilidade inicial, e de equilíbrio, tais como a emitância e o envelope, grandezas estatísticas estas usualmente de interesse em Física de Feixes. Os resultados obtidos foram comparados com simulações numéricas autoconsistentes e o acordo foi satisfatório. Os modelos demonstraram-se eficientes não somente em prever tais quantidades de interesse como também em elucidar aspectos físicos fundamentais intrínsecos ao comportamento observado nas simulações numéricas autoconsistentes e experimentos. / Applications involving confinement and acceleration of charged particle beams in linear channels are innumerous in many fields of the knowledge. The engineering evolution of next-generation particle linear accelerators is strongly conditioned to the better understanding of nonlinear phenomena like halo formation, inherent to the more and more currently explored regimes of high charge density and energy. The present work aims at investigating and characterizing dynamical and equilibrium aspects involved in the transition of a high-intensity beam of charged particles from an initial non-stationary state to a final stationary state. High particle densities mean that the repulsive forces naturally present in these kinds of systems are essential to their adequate description. The beam under analysis evolves inside a linear channel encapsulated by a circular conductor pipe, and is focalized by a constant axial magnetic field generated by solenoids. Such beam is initially perfectly aligned to the symmetry axis of the magnetic confinement system, being in this way its centroid oscillations non-existent. For simplicity, it has been imposed to the beam the constraint of azimuthal symmetry. As initial condition, the beam non-stationary state has been described by a homogeneous and an inhomogeneous particle density. In the first case, the mismatch and, in the second one, the magnitude of inhomogeneity, are the factors forerunner of the initial instability, which leads the beam to evolve to the equilibrium state. For both cases, models have been developed to determine dynamical quantities, related to the characteristic time scale of the initial instability, and equilibrium quantities, such as the emittance and envelope, usually of interest in Beam Physics. The obtained results have been compared with full self-consistent N-particle beam numerical simulations and the agreement has been reasonable. The models have shown to be efficient not only to predict beam quantities of interest as well as to elucidate fundamental physical aspects intrinsic to the behavior observed in the self-consistent numerical simulations and experiments.
4

Um estudo sobre feixes intensos e não-contínuos de partículas carregadas / A study of intense bunched charged particle beams

Silva, Thales Marques Corrêa da January 2016 (has links)
Nesta tese, estudamos feixes intensos não-contínuos de partículas carregadas. Na primeira parte, analisamos um feixe com simetria esférica e a sua relaxação para um estado quase-estacionário. Por ser um sistema com interação de longo alcance, a evolução do feixe e dominado pela dinâmica de Vlasov-Maxwell. Mostramos que o mecanismo de relaxação e a ressonância entre o movimento coletivo e o individual de algumas partículas. Fazemos uma analogia entre a dinâmica de Vlasov e um gás de férmions para modelar o estado quase estacionário. Os parâmetros do modelo são calculados usando princípios básicos, como os de conservação de energia e de partículas no transporte. Os resultados quando comparados com simulação mostram uma boa concordância. Na segunda parte, verificamos a estabilidade do modo de oscilação simétrico para um feixe esférico. Argumentamos que, quando esse modo for estável, o modelo para o estado quase-estacionário pode descrever feixes levemente anisotrópicos, o que e uma situação mais realista em experimentos. Constatamos que, num regime de interesse prático, esse modo e sempre estável. Por fim, estudamos um caso em que as forças focalizadoras externas são anisotrópicas, e o feixe tem simetria elipsoidal. Mostramos que, para certos valores dos parâmetros, há um forte acoplamento entre a dinâmica não-linear dos envelopes, o que causa uma troca de energia entre os graus de liberdade. Os resultados quando comparados com dinâmica molecular mostraram uma boa concordância. / In this thesis, we study intense bunched charged particle beams. In the rst part, we analyze a beam with spherical symmetry and its relaxation to a stationary state. The beam evolution follows the Vlasov-Maxwell dynamics since it is a system of long range interaction. We show that the main mechanism for the beam relaxation is a resonance between the collective beam motion and individual particle motion. We make an analogy between Vlasov dynamics and a Fermi gas to model the beam quasistationary state. The parameters of the model are calculated using basic principles, such as energy and particle conservation in the beam transport. The results compared with simulation showed a good agreement. In the second part, we verify the symmetric oscillation mode stability for a spherical beam. We argue that when this mode is stable, our model for the quasistationary state can also describe slightly anisotropic beams, a situation more realistic in experiments. We nd out that in situations of practical interest the mode is always stable. Finally, we study a situation in which the external focusing forces are anisotropic, and the beam has ellipsoidal symmetry. We show that, for certain values of the parameters, there is a strong coupling between the nonlinear envelopes dynamics, which causes exchange of energy between the degrees of freedom. The results compared with molecular dynamics showed a good agreement.
5

Um estudo sobre feixes intensos e não-contínuos de partículas carregadas / A study of intense bunched charged particle beams

Silva, Thales Marques Corrêa da January 2016 (has links)
Nesta tese, estudamos feixes intensos não-contínuos de partículas carregadas. Na primeira parte, analisamos um feixe com simetria esférica e a sua relaxação para um estado quase-estacionário. Por ser um sistema com interação de longo alcance, a evolução do feixe e dominado pela dinâmica de Vlasov-Maxwell. Mostramos que o mecanismo de relaxação e a ressonância entre o movimento coletivo e o individual de algumas partículas. Fazemos uma analogia entre a dinâmica de Vlasov e um gás de férmions para modelar o estado quase estacionário. Os parâmetros do modelo são calculados usando princípios básicos, como os de conservação de energia e de partículas no transporte. Os resultados quando comparados com simulação mostram uma boa concordância. Na segunda parte, verificamos a estabilidade do modo de oscilação simétrico para um feixe esférico. Argumentamos que, quando esse modo for estável, o modelo para o estado quase-estacionário pode descrever feixes levemente anisotrópicos, o que e uma situação mais realista em experimentos. Constatamos que, num regime de interesse prático, esse modo e sempre estável. Por fim, estudamos um caso em que as forças focalizadoras externas são anisotrópicas, e o feixe tem simetria elipsoidal. Mostramos que, para certos valores dos parâmetros, há um forte acoplamento entre a dinâmica não-linear dos envelopes, o que causa uma troca de energia entre os graus de liberdade. Os resultados quando comparados com dinâmica molecular mostraram uma boa concordância. / In this thesis, we study intense bunched charged particle beams. In the rst part, we analyze a beam with spherical symmetry and its relaxation to a stationary state. The beam evolution follows the Vlasov-Maxwell dynamics since it is a system of long range interaction. We show that the main mechanism for the beam relaxation is a resonance between the collective beam motion and individual particle motion. We make an analogy between Vlasov dynamics and a Fermi gas to model the beam quasistationary state. The parameters of the model are calculated using basic principles, such as energy and particle conservation in the beam transport. The results compared with simulation showed a good agreement. In the second part, we verify the symmetric oscillation mode stability for a spherical beam. We argue that when this mode is stable, our model for the quasistationary state can also describe slightly anisotropic beams, a situation more realistic in experiments. We nd out that in situations of practical interest the mode is always stable. Finally, we study a situation in which the external focusing forces are anisotropic, and the beam has ellipsoidal symmetry. We show that, for certain values of the parameters, there is a strong coupling between the nonlinear envelopes dynamics, which causes exchange of energy between the degrees of freedom. The results compared with molecular dynamics showed a good agreement.
6

Um estudo sobre feixes intensos e não-contínuos de partículas carregadas / A study of intense bunched charged particle beams

Silva, Thales Marques Corrêa da January 2016 (has links)
Nesta tese, estudamos feixes intensos não-contínuos de partículas carregadas. Na primeira parte, analisamos um feixe com simetria esférica e a sua relaxação para um estado quase-estacionário. Por ser um sistema com interação de longo alcance, a evolução do feixe e dominado pela dinâmica de Vlasov-Maxwell. Mostramos que o mecanismo de relaxação e a ressonância entre o movimento coletivo e o individual de algumas partículas. Fazemos uma analogia entre a dinâmica de Vlasov e um gás de férmions para modelar o estado quase estacionário. Os parâmetros do modelo são calculados usando princípios básicos, como os de conservação de energia e de partículas no transporte. Os resultados quando comparados com simulação mostram uma boa concordância. Na segunda parte, verificamos a estabilidade do modo de oscilação simétrico para um feixe esférico. Argumentamos que, quando esse modo for estável, o modelo para o estado quase-estacionário pode descrever feixes levemente anisotrópicos, o que e uma situação mais realista em experimentos. Constatamos que, num regime de interesse prático, esse modo e sempre estável. Por fim, estudamos um caso em que as forças focalizadoras externas são anisotrópicas, e o feixe tem simetria elipsoidal. Mostramos que, para certos valores dos parâmetros, há um forte acoplamento entre a dinâmica não-linear dos envelopes, o que causa uma troca de energia entre os graus de liberdade. Os resultados quando comparados com dinâmica molecular mostraram uma boa concordância. / In this thesis, we study intense bunched charged particle beams. In the rst part, we analyze a beam with spherical symmetry and its relaxation to a stationary state. The beam evolution follows the Vlasov-Maxwell dynamics since it is a system of long range interaction. We show that the main mechanism for the beam relaxation is a resonance between the collective beam motion and individual particle motion. We make an analogy between Vlasov dynamics and a Fermi gas to model the beam quasistationary state. The parameters of the model are calculated using basic principles, such as energy and particle conservation in the beam transport. The results compared with simulation showed a good agreement. In the second part, we verify the symmetric oscillation mode stability for a spherical beam. We argue that when this mode is stable, our model for the quasistationary state can also describe slightly anisotropic beams, a situation more realistic in experiments. We nd out that in situations of practical interest the mode is always stable. Finally, we study a situation in which the external focusing forces are anisotropic, and the beam has ellipsoidal symmetry. We show that, for certain values of the parameters, there is a strong coupling between the nonlinear envelopes dynamics, which causes exchange of energy between the degrees of freedom. The results compared with molecular dynamics showed a good agreement.

Page generated in 0.2134 seconds