Spelling suggestions: "subject:"hamburg wheel cracking device"" "subject:"hamburg wheel cracking crevice""
1 |
Evaluation of reclaimed asphalt pavement materials from ultra-thin bonded bituminous surfaceMusty, Haritha Yadav January 1900 (has links)
Master of Science / Department of Civil Engineering / Mustaque Hossain / The ultra-thin bonded bituminous surface (UBBS), popularly known as Novachip, is a
thin hot-mix asphalt layer with high-quality, gap-graded aggregates bonded to the existing
surface with a polymer-modified emulsion membrane. This thin surfacing improves ride quality, reduces road-tire noise, minimizes back spray, and increases visibility under wet conditions. The Kansas Department of Transportation (KDOT) has been using UBBS since 2002. Performance of this thin surface treatment strategy has been good in Kansas and elsewhere. However, some of these projects are now being rehabilitated. The objective of this study is to evaluate whether reclaimed asphalt pavement (RAP) materials from existing UBBS layers can be used in chip seal and Superpave mixtures. UBBS millings were studied with two different polymer-modified emulsions to assess their performance as precoated aggregates in chip seal. The ASTM D7000-04 sweep test was used to assess chip retention of UBBS millings. Three different mix designs were developed for both 12.5-mm and 9.5-mm nominal maximum aggregate size (NMAS)Superpave mixtures using a PG 70-22 asphalt binder and three different percentages (0%, 10%, and 20%) of reclaimed UBBS materials. The designed Superpave mixes were then tested for performance in terms of rutting and stripping using the Hamburg wheel tracking device (HWTD)and moisture sensitivity by modified Lottman tests. Sweep test results showed that UBBS millings did not improve chip retention. Superpave mix design data indicated volumetric properties of Superpave mixes with UBBS millings met all requirements specified by KDOT. HWTD and modified Lottman test results indicated all designed mixes performed better with the addition of UBBS millings as RAP materials. Field performance of UBBS projects was also evaluated. It was found that pavements treated with UBBS showed high variability in service life with majority serving six years. Before and after (BAA) studies showed that UBBS reduces pavement roughness, transverse and fatigue cracking one year after the treatment. However, no consistent improvement in rutting condition was found.
|
2 |
Rapid estimation of lives of deficient superpave mixes and laboratory-based accelerated mix testing modelsManandhar, Chandra Bahadur January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Mustaque Hossain / The engineers from the Kansas Department of Transportation (KDOT) often have to decide whether or not to accept non-conforming Superpave mixtures during construction. The first part of this study focused on estimating lives of deficient Superpave pavements incorporating nonconforming Superpave mixtures. These criteria were based on the Hamburg Wheel-Tracking Device (HWTD) test results and analysis. The second part of this study focused on developing accelerated mix testing models to considerably reduce test duration.
To accomplish the first objective, nine fine-graded Superpave mixes of 12.5-mm nominal maximum aggregate size (NMAS) with asphalt grade PG 64-22 from six administrative districts of KDOT were selected. Specimens were prepared at three different target air void levels @ N[subscript]design gyrations and four target simulated in-place density levels with the Superpave gyratory compactor. Average number of wheel passes to 20-mm rut depth, creep slope, stripping slope, and stripping inflection point in HWTD tests were recorded and then used in the statistical analysis. Results showed that, in general, higher simulated in-place density up to a certain limit of 91% to 93%, results in a higher number of wheel passes until 20-mm rut depth in HWTD tests. A Superpave mixture with very low air voids @ N[subscript]design (2%) level performed very poorly in the HWTD test.
HWTD tests were also performed on six 12.5-mm NMAS mixtures with air voids @ N[subscript]design of 4% for six projects, simulated in-place density of 93%, two temperature levels and five load levels with binder grades of PG 64-22, PG 64-28, and PG 70-22.
Field cores of 150-mm in diameter from three projects in three KDOT districts with 12.5-mm NMAS and asphalt grade of PG 64-22 were also obtained and tested in HWTD for model evaluation. HWTD test results indicated as expected. Statistical analysis was performed and accelerated mix testing models were developed to determine the effect of increased temperature and load on the duration of the HWTD test. Good consistency between predicted and observed test results was obtained when higher temperature and standard load level were used. Test duration of the HWTD can thus be reduced to two hours or less using accelerated mix testing (statistical) models.
|
Page generated in 0.0471 seconds