• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Geographical Study of the Development of Hamilton Harbour

Ozanian, Sona 05 1900 (has links)
No abstract provided. / Thesis / Candidate in Philosophy
2

Metal Dynamics in Hamilton Harbour

Nelson, Tara 03 1900 (has links)
<p> Metal contamination from anthropogenic activities is of great concern due to the associated detrimental effects on ecosystem health. An increase in metal concentrations in the dissolved phase creates greater ecosystem impacts. Thus, the relative extent of metal distribution between sediment and dissolved compartments, and an understanding of the factors that control this partitioning is key to assessing metal impacts. In this thesis, metal concentrations were determined for a suite of 12 metals (Cr, Mn, Co, Cu, Sn, Ag, As, Ni, Zn, Cd, Se and Fe) associated with three compartments, dissolved, surficial bed sediment and suspended particulate matter (SPM) in Hamilton Harbour, Ontario. Due to highly dynamic interactions of anthropogenic impacts that may work together to affect metal distributions as well as processes that occur over small or rapid scales, a high-resolution temporal and spatial scale was used to evaluate these metal distributions over a seasonal timeframe. </p> <p> Concentrations of metals amongst sediment fractions indicated that sediment metal uptake was largely controlled by the concentration of the sediment associated amorphous and crystalline oxyhydroxide fractions accounting for up to 90% of total sediment bound metal, even though the oxyhydroxides only accounted for a maximum of 23% of the total sediment mass for both surficial bed sediment and SPM compartments. The formation and dissolution of amorphous oxyhydroxides is commonly a microbially mediated process. Thus, these results underscore the important role of oxyhydroxides and the microbial processes that contribute to their formation and dissolution m controlling metal dynamics, and likely metal impacts in Hamilton Harbour. </p> <p> Metal partitioning was found to be both spatially and temporally variable for all compartments, temporally ranging 0.5 to 4 orders of magnitude for a given element; indicating highly dynamic metal exchanges between sediment and solution compartments and fluctuating distributions over the time and spatial scales examined. </p> <p> The suite of variables that are considered to control metal distribution between dissolved and sediment compartments, and thus impact metal toxicity (i.e., temperature, pH, specific conductivity, oxidation-reduction potential, dissolved organic carbon concentration, SPM concentration (for SPM associated metals only), fraction concentrations i.e. g carbonate /g solid, g amorphous oxyhydroxide I g solid, etc., and dissolved metal concentrations) did not constrain the variability in observed metal distribution behaviour, indicating that other factors in this system, such as hydrodynamic disturbances associated with shipping traffic and channelized water currents, as well as specific point source metal discharges, may play a larger role in determining metal partitioning in Hamilton Harbour, compared to less anthropogenically, impacted systems. Furthermore, no one master variable defming metal partitioning between the dissolved and sediment compartments was found, rather relationships controlling metal distribution behavior were site, compartment, sediment fraction and element specific highlighting the challenges for the development of a Harbour-wide management plan for priority metal contaminants. The results presented in this thesis, show that it is necessary to consider metal, site and compartment specific conditions as well as fully addressing temporal variability in metal behaviour. In addition, the results of this thesis point to the need to address hydrodynamic disturbance and point source influences on metal behaviour in Hamilton Harbour and likely extend to other multi-impacted metal contaminated systems. </p> / Thesis / Master of Science (MSc)
3

Sex, Contamination and Movement in an Invasive Fish

Marentette, Julie R. 10 1900 (has links)
<p>Animal movement has had a long history of study in the fields of behavioural ecology and toxicology, but rarely is the ecological context of behaviour in toxicology directly addressed. To explore how movement might be influenced by both sex differences and habitat contamination, I conducted studies on the round goby, an invasive fish, in a highly polluted part of Lake Ontario. In the first half of my dissertation I examined the reproductive biology of this species, finding evidence of multiple male reproductive tactics, and extended this to predict sex differences in goby movement. I showed that male fish were more exploratory in the laboratory, and over multiple years moved further in the field than females. This difference may predict variation in sex ratio along a round goby invasion front. Second, I accumulated multiple lines of evidence for contaminant exposure in these fish, validating their utility as a contaminant sentinel species in the field. With the same battery of behavioural tests, I revealed that round goby collected from cleaner sites were more exploratory than fish from highly contaminated sites in the laboratory, but moved similar distances in the field. Although changes in activity level are the most frequently used behavioural measure of contaminant exposure, the ecological relevance of change was not apparent in this study. These results challenge the utility of movement as an integrated biomarker of contaminant exposure beyond the laboratory.<strong></strong></p> / Doctor of Philosophy (PhD)
4

Instrumental Matrix: Regenerative Systems in Hamilton, Ontario

Dadson, Leland Thomas January 2005 (has links)
Positioned at the metaphysical divide between civilization and wilderness, this thesis investigates the potential for symbiotic relationships among cultural, ecological and industrial systems in an effort to suggest alternative modes for human sustainability. The City of Hamilton, where steel and iron industries continue to scar the landscape, serves as the location for a speculative design intervention. Amongst existing urban structures, a hybrid form of industrial production is proposed to acknowledge society’s reliance on artificial devices. In turn, this hybrid form is integrated with natural ecological processes to demonstrate humanity’s dependence on the natural world. The first chapter positions the thesis within a discourse regarding the boundary between civilization and wilderness and their conventional dichotomy. The thesis is aligned to themes of ecological-artificial hybridization, which include the scientific application of biological metaphors, economic and manufacturing theories of industrial ecology, and architectural and design methodology. Chapter two employs Complex Systems methodology to structure an analysis of Hamilton’s ‘intrinsic’ and ‘extrinsic’ systems. The city is considered within ecological, historical, cultural, industrial and economic contexts, at local and regional scales. Chapter three proposes an urban plan for Hamilton that seeks to regenerate and integrate ecological, cultural and industrial systems. Within the framework of this plan, industrial ecosystems can coexist with public function and ecological infrastructure in close proximity. Though designed for long term application, the plan is intended to provide context for a more detailed and immediate intervention within the scope of the thesis. Chapter four proposes the implementation of a speculative urban design, as a central component of the urban plan. Sited on the Stelco pier, one of the largest and oldest steel producers in Canada, the design would reclaim a pivotal historical and physical location along the Hamilton waterfront. Regeneration of the heavily contaminated industrial site will be initiated with a phased program of remediation and managed ecological succession. The new science of industrial ecology will inform this new development. This approach is based on a shift from ‘open loop’ systems, in which material and energy flows dissipate through processes of waste creation, towards ‘closed loop’ systems in which energy and material are recycled. A new Instrumental Matrix is proposed where decentralized cultural, ecological and industrial systems are interwoven to create diverse and sustainable habitats for wildlife, people and industry.
5

Globe Park: Hybridizing Cultural, Ecological, and Industrial Spaces on Hamilton's Bayfront Landscape

Votruba, Michael Wesley 22 May 2008 (has links)
Applying complex ecosystems theory, this thesis maps and analyzes the codependency of ecological and manufacturing flows affecting cities, the landscape, and the environment. Learning from this analysis, a prototype for a hybrid eco-manufacturing and urban park is proposed on degraded industrial lands. Its design is influenced by eco-industrial parks including Kalundborg and contemporary urban parks including La Villette, Downsview, and Fresh Kills. The prototype’s design is motivated by the mutating spatiality caused by contemporary trends in North American manufacturing and the degrading environmental state of the Great Lakes. The horizontal expansion of post-Fordist industrial areas on the urban periphery of North American cities has helped lead decentralization of core urban areas. This organization is becoming vulnerable to future energy and environmental concerns. In Hamilton, this trend has resulted in approximately 3,400 acres of underutilized contaminated land in its historical bayfront industrial areas. The hybrid park prototype will incubate reuse of a 576 acre site within this land by creating a network of eco-operations and public spaces. As part of North America’s Great Lakes, Hamilton Harbour drains into the head of Lake Ontario. The Port of Hamilton’s manufacturing activity strains the ecological systems of these lakes. Some of the most problematic discharge into Hamilton Harbour occurs at Windermere Basin. The basin is surrounded by a twilight industrial area that contaminates its water, soil, and air. This will be the location of the hybrid park prototype. Light manufacturing spaces that treat industrial contamination will be designed. Their organization will hypothesize a new form of urbanization based on environmentally benign uses of energy and materials.
6

Instrumental Matrix: Regenerative Systems in Hamilton, Ontario

Dadson, Leland Thomas January 2005 (has links)
Positioned at the metaphysical divide between civilization and wilderness, this thesis investigates the potential for symbiotic relationships among cultural, ecological and industrial systems in an effort to suggest alternative modes for human sustainability. The City of Hamilton, where steel and iron industries continue to scar the landscape, serves as the location for a speculative design intervention. Amongst existing urban structures, a hybrid form of industrial production is proposed to acknowledge society’s reliance on artificial devices. In turn, this hybrid form is integrated with natural ecological processes to demonstrate humanity’s dependence on the natural world. The first chapter positions the thesis within a discourse regarding the boundary between civilization and wilderness and their conventional dichotomy. The thesis is aligned to themes of ecological-artificial hybridization, which include the scientific application of biological metaphors, economic and manufacturing theories of industrial ecology, and architectural and design methodology. Chapter two employs Complex Systems methodology to structure an analysis of Hamilton’s ‘intrinsic’ and ‘extrinsic’ systems. The city is considered within ecological, historical, cultural, industrial and economic contexts, at local and regional scales. Chapter three proposes an urban plan for Hamilton that seeks to regenerate and integrate ecological, cultural and industrial systems. Within the framework of this plan, industrial ecosystems can coexist with public function and ecological infrastructure in close proximity. Though designed for long term application, the plan is intended to provide context for a more detailed and immediate intervention within the scope of the thesis. Chapter four proposes the implementation of a speculative urban design, as a central component of the urban plan. Sited on the Stelco pier, one of the largest and oldest steel producers in Canada, the design would reclaim a pivotal historical and physical location along the Hamilton waterfront. Regeneration of the heavily contaminated industrial site will be initiated with a phased program of remediation and managed ecological succession. The new science of industrial ecology will inform this new development. This approach is based on a shift from ‘open loop’ systems, in which material and energy flows dissipate through processes of waste creation, towards ‘closed loop’ systems in which energy and material are recycled. A new Instrumental Matrix is proposed where decentralized cultural, ecological and industrial systems are interwoven to create diverse and sustainable habitats for wildlife, people and industry.
7

Globe Park: Hybridizing Cultural, Ecological, and Industrial Spaces on Hamilton's Bayfront Landscape

Votruba, Michael Wesley 22 May 2008 (has links)
Applying complex ecosystems theory, this thesis maps and analyzes the codependency of ecological and manufacturing flows affecting cities, the landscape, and the environment. Learning from this analysis, a prototype for a hybrid eco-manufacturing and urban park is proposed on degraded industrial lands. Its design is influenced by eco-industrial parks including Kalundborg and contemporary urban parks including La Villette, Downsview, and Fresh Kills. The prototype’s design is motivated by the mutating spatiality caused by contemporary trends in North American manufacturing and the degrading environmental state of the Great Lakes. The horizontal expansion of post-Fordist industrial areas on the urban periphery of North American cities has helped lead decentralization of core urban areas. This organization is becoming vulnerable to future energy and environmental concerns. In Hamilton, this trend has resulted in approximately 3,400 acres of underutilized contaminated land in its historical bayfront industrial areas. The hybrid park prototype will incubate reuse of a 576 acre site within this land by creating a network of eco-operations and public spaces. As part of North America’s Great Lakes, Hamilton Harbour drains into the head of Lake Ontario. The Port of Hamilton’s manufacturing activity strains the ecological systems of these lakes. Some of the most problematic discharge into Hamilton Harbour occurs at Windermere Basin. The basin is surrounded by a twilight industrial area that contaminates its water, soil, and air. This will be the location of the hybrid park prototype. Light manufacturing spaces that treat industrial contamination will be designed. Their organization will hypothesize a new form of urbanization based on environmentally benign uses of energy and materials.
8

Assessment of toxic cyanobacterial abundance at Hamilton Harbour from analysis of sediment and water

Jonlija, Miroslava January 2014 (has links)
The western embayment of Lake Ontario, Hamilton Harbour, is one of the most polluted sites in the Laurentian Great Lakes and in recent years has seen a reoccurrence of cyanobacterial blooms. This study uses a multidisciplinary approach to examine the presences of toxic Cyanobacteria in the harbour in order to gain insight into these recurrent blooms. Microscopic analyses of phytoplankton samples collected during the 2009 summer-fall sampling season from two locations within the harbour showed the spatial and seasonal diversity of the contemporary cyanobacterial community. Microcystis colonies relative abundances in relation to total algal numbers were estimated. The lowest and highest relative abundances of Microcystis in the phytoplankton population were 0.6% and 9.7%, respectively, and showed seasonal variability between stations. Fourteen cyanobacterial genera comprising six families and three orders were identified and for which the most abundant filamentous genera during the summer-fall sampling season were Planktothrix, Aphanizomenon and Limnothrix. Potential microcystin producers Microcystis, Planktothrix, Aphanizomenon and Dolichospermum were also present and during the sampling period Microcystis was recorded at both stations on all dates, however, its relative abundance was below 10 % throughout the study period. The composition and abundance of filamentous cyanobacteria were observed to be positively statistically correlated to water quality environmental parameters dissolved nitrates (NO3/NO2), dissolved inorganic carbon (DIC), and conductivity. Redundancy analysis (RDA) found that 53.35% total variance of Aphanizomenon was correlated to low water column NO3/NO2 and conductivity, and higher water column DIC. 58.13% of the relative abundance of Planktothrix was correlated to high concentrations of dissolved nitrates, while 51.69% of total variance of Limnothrix was correlated to higher DIC and lower water column dissolved nitrate concentrations. Information about past cyanobacterial communities was obtained from the sediment core analysis, using paleolimnological and modern molecular methods. The age of the 100.5 cm long sediment core retrieved from the deepest part of Hamilton Harbour was established to be 140 years (1869-2009), using the Constant Rate of Supply (CRS) 210Pb age model. This age was not sufficient to provide information of harbour’s environmental conditions, presence of the blooms, and triggers for their occurrence before European settlement in the area. Results of the HPLC analysis of fossil pigments indicated that the dominant members of the algal community have not changed over the 140 years and that cyanobacteria were regular members of the phytoplankton community. The composition of the major chlorophyll pigments indicated high presence of Chlorophyta and Bacillariophyta in the harbour at all times. The main algal groups identified on the basis of marker pigments presence, besides the Chlorophyta and Bacillariophyta, were the Dinophyta and the Cryptophyta. The presence of a scytonemin derivative, compound B, indicated that cyanobacterial blooms were occurring in past, before the first officially recorded blooms in the 1960s. Cyanobacterial pigments presence indicated that Cyanobacteria have been a regular but not dominant feature of Hamilton Harbour phytoplankton in the past. To our knowledge, this study is the first one examining fossil pigments from Hamilton Harbour. Results of the PCR-DGGE molecular analysis of 16S rRNA-V3 gene fragments from sedimentary DNA revealed the presence of thirteen cyanobacterial genotypes. The temporal change in the cyanobacterial community composition was indicated by the increasing number of species over time, from the oldest to the most recent sediment layers. The deepest sediment strata showed the lowest number (two bands) and intensity of bands. The most recent sediment layer had the greatest numbers (11) and intensity of bands. This increased diversity indicated changing environmental conditions in the harbour, primarily nutrient pollution and worsening water quality. Results of the PCR-DGGE molecular analysis of mcyE-AMT gene fragments showed that Microcystis aeruginosa and Planktothrix rubescens were two microcystin producers present in Hamilton Harbour over the last 80 years. The persistent presence and resilience of these two genera indicated a more serious and longer-term issue of toxic blooms than previously recognized. Historical records show that noticeable anthropogenic impact on Lake Ontario environment has been measurable since the 1780s, the first dramatic impact on the Lake Ontario watershed was evident from the mid1880s, the earliest evidence of eutrophication in the lake occurred between 1820 and 1850, while human induced environmental changes in Hamilton Harbour date back ca. 350 years. In the 1960s, cyanobacterial blooms were first officially recognized in the harbour and the lower Great Lakes. The present research is the first report of the mcyE module and AMT domain of microcystin genes being amplified from sediment of North American lakes, and showed that toxic Cyanobacterial have been regular members of Hamilton Harbour phytoplankton community for almost a century. This research considerably deepened the knowledge of the past toxic cyanobacterial blooms in Hamilton Harbour and their possible causes. It also showed that in the absence of historical records, both the PCR-DGGE method and the mcyE-AMT gene may be used for reconstruction of the past toxic blooms not only in the Laurentian Great Lakes, but also in other aquatic regions of the world impacted by toxic cyanobacterial blooms. Also, it demonstrated the utility of the combined molecular and paleolimnological analyses, which might become a useful tool in the determination of the bloom causes factors and in the mitigation of the future production of toxic blooms.

Page generated in 0.0424 seconds