Spelling suggestions: "subject:"hamilton jacobi bellman"" "subject:"hamilton jacobi hellman""
11 |
Measurement of Dynamic Efficiency in Production : An Application of Data Envelopment Analysis to Japanese Electric UtilitiesNemoto, Jiro, Goto, Mika January 2003 (has links)
No description available.
|
12 |
Aplicação de modelos de tempo-contínuo para escolha de portfólio ótimoMeira, Anna Carolina Granja January 2011 (has links)
A presente dissertação expõe o ambiente em que o Problema de Merton é construído e, baseando-se na bibliografia apresentada, constrói exemplos em softwares cujas especificidades podem colaborar na clareza da resolução. O software Matlab engloba as soluções numéricas, enquanto o software Maple é responsável pela solução de equações diferenciais ordinárias e parciais de forma simbólica. Apresenta-se modificações do Problema de Merton original como exercícios para melhor esclarecer os diferentes parâmetros abordados. Na seção final é apresentada a solução de viscosidade, uma alternativa quando a função valor não apresenta características desejáveis para a análise apresentada. / This dissertation explicit the environment which Merton’s problem is built, according to the presented bibliography, exemples are built in softwares whose specificity might help to clarify the solution. The Matlab software embraces numeric solutions, while Maple software is appropriate to solve ordinary and parcial differential equations in symbolic form. Some modifications are presented to Merton’s Problem as exercise to improve understanding on the variations adopted. On final section, viscosity solutions are presented as an alternative solution for when the value function does not possess the desirables properties that allow the analysis on focus.
|
13 |
Aplicação de modelos de tempo-contínuo para escolha de portfólio ótimoMeira, Anna Carolina Granja January 2011 (has links)
A presente dissertação expõe o ambiente em que o Problema de Merton é construído e, baseando-se na bibliografia apresentada, constrói exemplos em softwares cujas especificidades podem colaborar na clareza da resolução. O software Matlab engloba as soluções numéricas, enquanto o software Maple é responsável pela solução de equações diferenciais ordinárias e parciais de forma simbólica. Apresenta-se modificações do Problema de Merton original como exercícios para melhor esclarecer os diferentes parâmetros abordados. Na seção final é apresentada a solução de viscosidade, uma alternativa quando a função valor não apresenta características desejáveis para a análise apresentada. / This dissertation explicit the environment which Merton’s problem is built, according to the presented bibliography, exemples are built in softwares whose specificity might help to clarify the solution. The Matlab software embraces numeric solutions, while Maple software is appropriate to solve ordinary and parcial differential equations in symbolic form. Some modifications are presented to Merton’s Problem as exercise to improve understanding on the variations adopted. On final section, viscosity solutions are presented as an alternative solution for when the value function does not possess the desirables properties that allow the analysis on focus.
|
14 |
Aplicação de modelos de tempo-contínuo para escolha de portfólio ótimoMeira, Anna Carolina Granja January 2011 (has links)
A presente dissertação expõe o ambiente em que o Problema de Merton é construído e, baseando-se na bibliografia apresentada, constrói exemplos em softwares cujas especificidades podem colaborar na clareza da resolução. O software Matlab engloba as soluções numéricas, enquanto o software Maple é responsável pela solução de equações diferenciais ordinárias e parciais de forma simbólica. Apresenta-se modificações do Problema de Merton original como exercícios para melhor esclarecer os diferentes parâmetros abordados. Na seção final é apresentada a solução de viscosidade, uma alternativa quando a função valor não apresenta características desejáveis para a análise apresentada. / This dissertation explicit the environment which Merton’s problem is built, according to the presented bibliography, exemples are built in softwares whose specificity might help to clarify the solution. The Matlab software embraces numeric solutions, while Maple software is appropriate to solve ordinary and parcial differential equations in symbolic form. Some modifications are presented to Merton’s Problem as exercise to improve understanding on the variations adopted. On final section, viscosity solutions are presented as an alternative solution for when the value function does not possess the desirables properties that allow the analysis on focus.
|
15 |
Stochastic Optimal Control of Renewable EnergyCaballero, Renzo 30 June 2019 (has links)
Uruguay is a pioneer in the use of renewable sources of energy and can usually satisfy its total demand from renewable sources. Control and optimization of the system is complicated by half of the installed power - wind and solar sources - be- ing non-controllable with high uncertainty and variability. In this work we present a novel optimization technique for efficient use of the production facilities. The dy- namical system is stochastic, and we deal with its non-Markovian dynamics through a Lagrangian relaxation. Continuous-time optimal control and value function are found from the solution to a sequence of Hamilton-Jacobi-Bellman partial differential equations associated with the system. We introduce a monotone scheme to avoid spurious oscillations in the numerical solution and apply the technique to a number of examples taken from the Uruguayan grid. We use parallelization and change of variables to reduce the computational times. Finally, we study the usefulness of extra system storage capacity offered by batteries.
|
16 |
Stochastic Optimal Control Models for Management of Plecoglossus altivelis under Predation Pressure from Phalacrocorax carbo / カワウ捕食圧下におけるアユ管理のための確率制御モデルYaegashi, Yuta 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第22488号 / 農博第2392号 / 新制||農||1076(附属図書館) / 学位論文||R2||N5268(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 藤原 正幸, 教授 村上 章, 准教授 宇波 耕一 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
17 |
Numerical Methods for Stochastic Control Problems with Applications in Financial MathematicsBlechschmidt, Jan 25 May 2022 (has links)
This thesis considers classical methods to solve stochastic control problems and valuation problems from financial mathematics numerically.
To this end, (linear) partial differential equations (PDEs) in non-divergence form or the optimality conditions known as the (nonlinear) Hamilton-Jacobi-Bellman (HJB) equations are solved by means of finite differences, volumes and elements.
We consider all of these three approaches in detail after a thorough introduction to stochastic control problems and discuss various solution terms including classical solutions, strong solutions, weak solutions and viscosity solutions.
A particular role in this thesis play degenerate problems.
Here, a new model for the optimal control of an energy storage facility is developed which extends the model introduced in [Chen, Forsyth (2007)].
This four-dimensional HJB equation is solved by the classical finite difference Kushner-Dupuis scheme [Kushner, Dupuis (2001)] and a semi-Lagrangian variant which are both discussed in detail.
Additionally, a convergence proof of the standard scheme in the setting of parabolic HJB equations is given.
Finite volume schemes are another classical method to solve partial differential equations numerically.
Sharing similarities to both finite difference and finite element schemes we develop a vertex-centered dual finite volume scheme.
We discuss convergence properties and apply the scheme to the solution of HJB equations, which has not been done in such a broad context, to the best of our knowledge.
Astonishingly, this is one of the first times the finite volume approach is systematically discussed for the solution of HJB equations.
Furthermore, we give many examples which show advantages and disadvantages of the approach.
Finally, we investigate novel tailored non-conforming finite element approximations of second-order PDEs in non-divergence form, utilizing finite-element Hessian recovery strategies to approximate second derivatives in the equation.
We study approximations with both continuous and discontinuous trial functions.
Of particular interest are a-priori and a-posteriori error estimates as well as adaptive finite element methods.
In numerical experiments our method is compared with other approaches known from the literature.
We discuss implementations of all three approaches in MATLAB (finite differences and volumes) and FEniCS (finite elements) publicly available in GitHub repositories under https://github.com/janblechschmidt.
Many numerical experiments show convergence properties as well as pros and cons of the respective approach.
Additionally, a new postprocessing procedure for policies obtained from numerical solutions of HJB equations is developed which improves the accuracy of control laws and their incurred values.
|
18 |
Stochastic Modeling of Hydrological Events for Better Water Management / よりよい水管理に資する水文事象の確率論的モデル化Erfaneh, Sharifi 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第20006号 / 農博第2190号 / 新制||農||1045(附属図書館) / 学位論文||H28||N5015(農学部図書室) / 33102 / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 藤原 正幸, 教授 村上 章, 准教授 宇波 耕一 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
19 |
Merton's Portfolio Problem under Grezelak-Oosterlee-Van Veeren ModelRomsäter, Tara January 2023 (has links)
Merton’s Optimal Investment-Consumption Problem is a classic optimization problem in finance. It aims to find the optimal controls for a portfolio with both risky and risk-less assets, inorder to maximize an investor’s utility function. One of the controls is the optimal allocationof wealth invested in a risky asset and the other control is the consumption rate. The problemis solved by using Dynamic Programming and the related Hamilton-Jacobi-Bellman equation.One of the disadvantages of the original problem is the consideration of constant volatility. Inthis thesis, we extend Merton’s problem considering the Grzelak-Oosterlee-Van Veeren modelthat describes the dynamics of a risky asset with stochastic volatility and stochastic interestrate. We derive the related Hamilton-Jacobi-Bellman for Merton’s problem considering theGrzelak-Oosterlee-Van Veeren model. We simulate the controls from Merton’s problem intwo different cases, one case where the volatility and interest rate are stochastic, following theGOVV-model. In the other case, the volatility and interest rate are assumed to be constant, asin Merton’s problem. The results obtained from simulations show that the case with stochasticvolatility and interest gave the same results as the case where the volatility and the interest ratewere assumed to be constant.
|
20 |
Dynamique des populations : contrôle stochastique et modélisation hybride du cancer / Population dynamics : stochastic control and hybrid modelling of cancerClaisse, Julien 04 July 2014 (has links)
L'objectif de cette thèse est de développer la théorie du contrôle stochastique et ses applications en dynamique des populations. D'un point de vue théorique, nous présentons l'étude de problèmes de contrôle stochastique à horizon fini sur des processus de diffusion, de branchement non linéaire et de branchement-diffusion. Dans chacun des cas, nous raisonnons par la méthode de la programmation dynamique en veillant à démontrer soigneusement un argument de conditionnement analogue à la propriété de Markov forte pour les processus contrôlés. Le principe de la programmation dynamique nous permet alors de prouver que la fonction valeur est solution (régulière ou de viscosité) de l'équation de Hamilton-Jacobi-Bellman correspondante. Dans le cas régulier, nous identifions également un contrôle optimal markovien par un théorème de vérification. Du point de vue des applications, nous nous intéressons à la modélisation mathématique du cancer et de ses stratégies thérapeutiques. Plus précisément, nous construisons un modèle hybride de croissance de tumeur qui rend compte du rôle fondamental de l'acidité dans l'évolution de la maladie. Les cibles de la thérapie apparaissent explicitement comme paramètres du modèle afin de pouvoir l'utiliser comme support d'évaluation de stratégies thérapeutiques. / The main objective of this thesis is to develop stochastic control theory and applications to population dynamics. From a theoritical point of view, we study finite horizon stochastic control problems on diffusion processes, nonlinear branching processes and branching diffusion processes. In each case we establish a dynamic programmic principle by carefully proving a conditioning argument similar to the strong Markov property for controlled processes. Then we deduce that the value function is a (viscosity or regular) solution of the associated Hamilton-Jacobi-Bellman equation. In the regular case, we further identify an optimal control in the class of markovian strategies thanks to a verification theorem. From a pratical point of view, we are interested in mathematical modelling of cancer growth and treatment. More precisely, we build a hybrid model of tumor growth taking into account the essential role of acidity. Therapeutic targets appear explicitly as model parameters in order to be able to evaluate treatment strategies.
|
Page generated in 0.0749 seconds