Spelling suggestions: "subject:"hamiltonian PDE"" "subject:"jamiltonian PDE""
1 |
Dynamique hors équilibre des théories classiques des champs et des modèles de spin d’Ising / Out-of-equilibrium dynamics in classical field theories and Ising spin modelsRicateau, Hugo 29 September 2017 (has links)
Cette thèse est constituée de deux parties indépendantes. Dans le premier chapitre, nous introduisons une méthode numérique permettant d'intégrer des équations aux dérivées partielles représentant la dynamique Hamiltonienne de théories des champs. Cette méthode est un intégrateur multi-symplectique qui préserve localement le tenseur énergie-impulsion sur de très longues périodes de temps et avec précision. Son principal avantage est d'être extrêmement simple tout en restant bien définie localement. Nous la mettons à l'épreuve sur le cas particulier du modèle phi^4 en 1+1 dimensions; nous expliquons également comment l'implémenter en dimensions supérieures. De plus, nous faisons une présentation géométrique de la structure multi-symplectique et nous introduisons une construction permettant de résoudre le problème de dégénérescence pouvant l'affecter.Le second chapitre traite d'aspects hors équilibre dans les systèmes statistiques: nous nous intéressons en particulier à la question de l'impact d'un taux de refroidissement fini lors d'une trempe à travers une transition de phase du second ordre. Pour décrire plus fidèlement le régime hors équilibre qui se produit avant la transition de phase, nous étendons le mécanisme dit de Kibble-Zurek. Nous décrivons comment la taille caractéristique des objets géométriques présents dans le système dépend du temps et du taux de refroidissement; ceci, avant et une fois le point critique atteint. Ces prédictions théoriques sont mises à l'épreuve sur l'exemple du modèle d'Ising ferromagnétique. Nous décrivons également les propriétés géométriques des domaines qui apparaissent dans le système au cours de la dynamique de refroidissement. / This thesis is made up of two independent parts. In the first chapter, we introduce a novel numerical method to integrate partial differential equations representing the Hamiltonian dynamics of field theories. It is a multi-symplectic integrator that locally conserves the stress-energy tensor with an excellent precision over very long periods. Its major advantage is that it is extremely simple (it is basically a centered box scheme) while remaining locally well defined. We put it to the test in the case of the non-linear wave equation (with quartic potential) in one spatial dimension, and we explain how to implement it in higher dimensions. A formal geometric presentation of the multi-symplectic structure is also given as well as a technical trick allowing to solve the degeneracy problem that potentially accompanies the multi-symplectic structure. In the second chapter, we address the issue of the influence of a finite cooling rate while performing a quench across a second order phase transition. We extend the Kibble-Zurek mechanism to describe in a more faithfully way the out-of-equilibrium regime of the dynamics before crossing the transition. We describe the time and cooling rate dependence of the typical growing size of the geometric objects, before and when reaching the critical point. These theoretical predictions are demonstrated through a numerical study of the emblematic kinetic ferromagnetic Ising model on the square lattice. A description of the geometric properties of the domains present in the system in the course of the annealing and when reaching the transition is also given.
|
2 |
Instabilité et croissance des normes de Sobolev pour certaines EDP hamiltoniennes / Instability and growth of Sobolev norms for certain Hamiltonian PDEsThirouin, Joseph 02 July 2018 (has links)
Cette thèse est consacrée à l'étude de solutions globales et régulières de certaines EDP hamiltoniennes, du point de vue de la croissance de leurs normes de Sobolev. Un tel phénomène traduit une modification de la répartition de l'énergie dans l'espace des fréquences, appelée parfois "turbulence faible". On étudie d'abord une équation d'évolution non-linéaire où intervient un laplacien fractionnaire, et l'on prouve des estimées a priori sur la vitesse de croissance des normes de Sobolev. On introduit ensuite une équation où de telles estimées sont optimales : une équation de Szegő, intégrable, avec une non-linéarité quadratique, et où certaines solutions régulières croissent à vitesse exponentielle tout en restant bornées dans l'espace d'énergie. On classifie les ondes progressives de cette équation de Szegő quadratique, et l'on met en évidence l'instabilité d'une partie d'entre elles. Enfin, on exhibe pour cette équation une hiérarchie de lois de conservation, qui permet d'étudier plus précisément les solutions rationnelles turbulentes. / In this thesis we study global smooth solutions of certain Hamiltonian PDEs, in order to capture the possible growth of their Sobolev norms. Such a phenomenon is typical for what is sometimes called "weak turbulence" : a change in the distribution of energy between Fourier modes. We first study a nonlinear evolution equation involving a fractional Laplacian, and we prove a priori estimates on the growth of Sobolev norms. We then introduce an equation where these estimates turn out to be optimal : an integrable Szegő equation with a quadratic nonlinearity, which admits exponentially growing smooth solutions that remain bounded in the energy space. We classify the traveling wave solutions of this quadratic Szegő equation, and show that some of them are unstable. Eventually we find a hierarchy of conservation laws for this equation, which leads us into a deeper study of rational turbulent solutions.
|
Page generated in 0.0378 seconds