Spelling suggestions: "subject:"hamiltonian paths"" "subject:"jamiltonian paths""
1 |
Proper and weak-proper trees in edges-colored graphs and multigraphs / Arbres proprement et faiblement arêtes-coloriées dans les graphes et multigraphes arêtes-coloriéesBorozan, Valentin 30 September 2011 (has links)
Dans la présente thèse nous étudions l'extraction d'arbres dans des graphes arêtes-coloriés.Nous nous concentrons sur la recherche d'arbres couvrants proprement arête-coloriés et faiblement arête-coloriés, notée PST et WST. Nous montrons que les versions d'optimisation de ces problèmes sont NP-Complete dans le cas général des graphes arêtes-coloriés, et nous proposons des algorithmes pour trouver ces arbres dans le cas des graphes arêtes-coloriés sans cycles proprement arêtes-coloriés.Nous donnons également quelques limites de nonapproximabilité. Nous proposons des conditions suffisantes pour l'existence de la PST dans des graphes arêtes-coloriés (pas forcément propre), en fonction de différents paramètres de graphes, tels que : nombre total de couleurs, la connectivité et le nombre d'arêtes incidentes dedifférentes couleurs pour un sommet. Nous nous intéressons aux chemins hamiltoniens proprement arêtes-coloriés dans le casdes multigraphes arêtes-coloriés. Ils présentent de l'intérêt pour notre étude, car ce sontégalement des arbres couvrants proprement arêtes-coloriés. Nous établissons des conditions suffisantes pour qu'un multigraphe contienne un chemin hamiltonien proprement arêtes-coloriés, en fonction de plusieurs paramètres tels que le nombre d'arêtes, le degré d'arêtes, etc. Puisque l'une des conditions suffisantes pour l'existence des arbres couvrants proprement arêtes-coloriés est la connectivité, nous prouvons plusieurs bornes supérieures pour le plus petit nombre de couleurs nécessaires pour la k-connectivité-propre. Nous énonçons plusieurs conjectures pour les graphes généraux et bipartis, et on arrive à les prouver pour k = 1. / In this thesis, we investigate the extraction of trees from edge-colored graphs. We focus on finding trees with properties based on coloring. Namely, we deal with proper and weak proper spanning trees, denoted PST and WST.- We show the optimization versions of these problems to be NP-hard in the general case of edge-colored graphs and we provide algorithms to find these trees in the case of edge-colored graphs without properly edge-colored cycles. We also provide some nonapproximability bounds.- We investigate the existence of a PST in the case of edge-colored graphs under certain conditions on the graph, both structural and related to the coloration. We consider sufficient conditions that guarantee the existence of a PST in edge-colored (not necessarily proper) graphs with any number of colors. The conditions we consider are combinations ofvarious parameters such as : total number of colors, number of vertices, connectivity and the number of incident edges of different colors to the vertices.- We then consider properly edge-colored Hamiltonian paths in the edge-colored multigraphs, which are relevant to our study since they are also PST. We establish sufficient conditions for a multigraph to contain a proper edge-colored Hamiltonian path, depending on several parameters such as the number of edges, the degree of edges, etc.- Since one of the sufficient conditions for the existence of proper spanning trees is connectivity, we prove several upper bounds for the smallest number of colors needed to color a graph such that it is k-proper-connected. We state several conjectures for general and bipartite graphs, and we prove them for k = 1.
|
2 |
Graphes et couleurs : graphes arêtes-coloriés, coloration d'arêtes et connexité propre / Graphs and colors : edge-colored graphs, edge-colorings and proper connectionsMontero, Leandro Pedro 13 December 2012 (has links)
Dans cette thèse nous étudions différents problèmes de graphes et multigraphes arêtes-coloriés tels que la connexité propre, la coloration forte d'arêtes et les chaînes et cycles hamiltoniens propres. Enfin, nous améliorons l'algorithme connu $O(n^4)$ pour décider du comportement d'un graphe sous opérateur biclique, en étudiant les bicliques dans les graphes sans faux jumeaux. Plus précisément, 1) Nous étudions d'abord le nombre $k$-connexité-propre des graphes, noté $pc_k(G)$, ç'est à dire le nombre minimum de couleurs nécessaires pour colorer les arêtes d'un graphe de façon à ce qu'entre chaque paire de sommets, ils existent $k$ chemins intérieurement sommet-disjoints. Nous prouvons plusieurs bornes supérieures pour $pc_k(G)$. Nous énonçons quelques conjectures pour les graphes généraux et bipartis et nous les prouvons dans le cas où $k = 1$. 2) Nous étudions l'existence de chaînes et de cycles hamiltoniens propres dans les multigraphes arêtes-coloriés. Nous établissons des conditions suffisantes, en fonction de plusieurs paramètres tels que le nombre d'arêtes, le degré arc-en-ciel, la connexité, etc. 3) Nous montrons que l'indice chromatique fort est linéaire au degré maximum pour tout graphe $k$-dégénéré où, $k$ est fixe. En corollaire, notre résultat conduit à une amélioration des constantes et donne également un algorithme plus simple et plus efficace pour cette famille de graphes. De plus, nous considérons les graphes planaires extérieurs. Nous donnons une formule pour trouver l'indice chromatique fort exact pour les graphes bipartis planaires extérieurs. Nous améliorons également la borne supérieure pour les graphes planaires extérieurs généraux. 4) Enfin, nous étudions les bicliques dans les graphes sans faux jumeaux et nous présentons ensuite un algorithme $O(n+m)$ pour reconnaître les graphes convergents et divergents en améliorant l'algorithme $O(n^4)$. / In this thesis, we study different problems in edge-colored graphs and edge-colored multigraphs, such as proper connection, strong edge colorings, and proper hamiltonian paths and cycles. Finally, we improve the known $O(n^4)$ algorithm to decide the behavior of a graph under the biclique operator, by studying bicliques in graphs withoutfalse-twin vertices. In particular: 1) We first study the $k$-proper-connection number of graphs, this is, the minimum number of colors needed to color the edges of a graph such that between any pair of vertices there exist $k$ internally vertex-disjoint paths. We denote this number $pc_k(G)$. We prove several upper bounds for $pc_k(G)$. We state some conjectures for general and bipartite graphs, and we prove all of them for the case $k=1$. 2) Then, we study the existence of proper hamiltonian paths and proper hamiltonian cycles in edge-colored multigraphs. We establish sufficient conditions, depending on several parameters such as the number of edges, the rainbow degree, the connectivity, etc. 3) Later, we showthat the strong chromatic index is linear in the maximum degree for any $k$-degenerate graph where $k$ is fixed. As a corollary, our result leads to considerable improvement of the constants and also gives an easier and more efficient algorithm for this familly of graphs. Next, we consider outerplanar graphs. We give a formula to find exact strong chromatic index for bipartite outerplanar graphs. We also improve the upper bound for general outerplanar graphs from the $3\Delta-3$ bound. 4) Finally, we study bicliques in graphs without false-twin vertices and then we present an $O(n+m)$ algorithm to recognize convergent and divergent graphs improving the $O(n^4)$ known algorithm.
|
Page generated in 0.0469 seconds