• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Programming with Multiple Candidates and its Applications to Sign Language and Hand Gesture Recognition

Yang, Ruiduo 07 March 2008 (has links)
Dynamic programming has been widely used to solve various kinds of optimization problems.In this work, we show that two crucial problems in video-based sign language and gesture recognition systems can be attacked by dynamic programming with additional multiple observations. The first problem occurs at the higher (sentence) level. Movement epenthesis [1] (me), i.e., the necessary but meaningless movement between signs, can result in difficulties in modeling and scalability as the number of signs increases. The second problem occurs at the lower (feature) level. Ambiguity of hand detection and occlusion will propagate errors to the higher level. We construct a novel framework that can handle both of these problems based on a dynamic programming approach. The me has only be modeled explicitly in the past. Our proposed method tries to handle me in a dynamic programming framework where we model the me implicitly. We call this enhanced Level Building (eLB) algorithm. This formulation also allows the incorporation of statistical grammar models such as bigrams and trigrams. Another dynamic programming process that handles the problem of selecting among multiple hand candidates is also included in the feature level. This is different from most of the previous approaches, where a single observation is used. We also propose a grouping process that can generate multiple, overlapping hand candidates. We demonstrate our ideas on three continuous American Sign Language data sets and one hand gesture data set. The ASL data sets include one with a simple background, one with a simple background but with the signer wearing short sleeved clothes, and the last with a complex and changing background. The gesture data set contains color gloved gestures with a complex background. We achieve within 5% performance loss from the automatically chosen me score compared with the manually chosen me score. At the low level, we first over segment each frame to get a list of segments. Then we use a greedy method to group the segments based on different grouping cues. We also show that the performance loss is within 5% when we compare this method with manually selected feature vectors.
2

Deep neural networks for semantic segmentation

Bojja, Abhishake Kumar 28 April 2020 (has links)
Segmenting image into multiple meaningful regions is an essential task in Computer Vision. Deep Learning has been highly successful for segmentation, benefiting from the availability of the annotated datasets and deep neural network architectures. However, depth-based hand segmentation, an important application area of semantic segmentation, has yet to benefit from rich and large datasets. In addition, while deep methods provide robust solutions, they are often not efficient enough for low-powered devices. In this thesis, we focus on these two problems. To tackle the problem of lack of rich data, we propose an automatic method for generating high-quality annotations and introduce a large scale hand segmentation dataset. By exploiting the visual cues given by an RGBD sensor and a pair of colored gloves, we automatically generate dense annotations for two-hand segmentation. Our automatic annotation method lowers the cost/complexity of creating high-quality datasets and makes it easy to expand the dataset in the future. To reduce the computational requirement and allow real-time segmentation on low power devices, we propose a new representation and architecture for deep networks that predict segmentation maps based on Voronoi Diagrams. Voronoi Diagrams split space into discrete regions based on proximity to a set of points making them a powerful representation of regions, which we can then use to represent our segmentation outcomes. Specifically, we propose to estimate the location and class for these sets of points, which are then rasterized into an image. Notably, we use a differentiable definition of the Voronoi Diagram based on the softmax operator, enabling its use as a decoder layer in an end-to-end trainable network. As rasterization can take place at any given resolution, our method especially excels at rendering high-resolution segmentation maps, given a low-resolution image. We believe that our new HandSeg dataset will open new frontiers in Hand Segmentation research, and our cost-effective automatic annotation pipeline can benefit other relevant labeling tasks. Our newly proposed segmentation network enables high-quality segmentation representations that are not practically possible on low power devices using existing approaches. / Graduate
3

Optické metody rozeznání gest / Optical methods of gesture recognition

Netopil, Jan January 2016 (has links)
This thesis deals with optical devices and methods image processing for recognizing hand gestures. The types of gestures, possible applications, contact based devices and vision based devices are described in thesis. Next, a review of hand detection, features extraction and gesture classification is provided. Proposed gesture recognition system consists of infrared camera FLIR A655sc, infrared FLIR Lepton module, webcam Logitech S7500, method for hand gesture analysis and a database of gestures for classification. For each of the devices, gesture recognition is evaluated in terms of speed and accuracy in different environments. The proposed method was implemented in MATLAB.
4

Real-time hand segmentation using deep learning / Hand-segmentering i realtid som använder djupinlärning

Favia, Federico January 2021 (has links)
Hand segmentation is a fundamental part of many computer vision systems aimed at gesture recognition or hand tracking. In particular, augmented reality solutions need a very accurate gesture analysis system in order to satisfy the end consumers in an appropriate manner. Therefore the hand segmentation step is critical. Segmentation is a well-known problem in image processing, being the process to divide a digital image into multiple regions with pixels of similar qualities. Classify what pixels belong to the hand and which ones belong to the background need to be performed within a real-time performance and a reasonable computational complexity. While in the past mainly light-weight probabilistic and machine learning approaches were used, this work investigates the challenges of real-time hand segmentation achieved through several deep learning techniques. Is it possible or not to improve current state-of-theart segmentation systems for smartphone applications? Several models are tested and compared based on accuracy and processing speed. Transfer learning-like approach leads the method of this work since many architectures were built just for generic semantic segmentation or for particular applications such as autonomous driving. Great effort is spent on organizing a solid and generalized dataset of hands, exploiting the existing ones and data collected by ManoMotion AB. Since the first aim was to obtain a really accurate hand segmentation, in the end, RefineNet architecture is selected and both quantitative and qualitative evaluations are performed, considering its advantages and analysing the problems related to the computational time which could be improved in the future. / Handsegmentering är en grundläggande del av många datorvisionssystem som syftar till gestigenkänning eller handspårning. I synnerhet behöver förstärkta verklighetslösningar ett mycket exakt gestanalyssystem för att tillfredsställa slutkonsumenterna på ett lämpligt sätt. Därför är handsegmenteringssteget kritiskt. Segmentering är ett välkänt problem vid bildbehandling, det vill säga processen att dela en digital bild i flera regioner med pixlar av liknande kvaliteter. Klassificera vilka pixlar som tillhör handen och vilka som hör till bakgrunden måste utföras i realtidsprestanda och rimlig beräkningskomplexitet. Medan tidigare använts huvudsakligen lättviktiga probabilistiska metoder och maskininlärningsmetoder, undersöker detta arbete utmaningarna med realtidshandsegmentering uppnådd genom flera djupinlärningstekniker. Är det möjligt eller inte att förbättra nuvarande toppmoderna segmenteringssystem för smartphone-applikationer? Flera modeller testas och jämförs baserat på noggrannhet och processhastighet. Transfer learning-liknande metoden leder metoden för detta arbete eftersom många arkitekturer byggdes bara för generisk semantisk segmentering eller för specifika applikationer som autonom körning. Stora ansträngningar läggs på att organisera en gedigen och generaliserad uppsättning händer, utnyttja befintliga och data som samlats in av ManoMotion AB. Eftersom det första syftet var att få en riktigt exakt handsegmentering, väljs i slutändan RefineNetarkitekturen och både kvantitativa och kvalitativa utvärderingar utförs med beaktande av fördelarna med det och analys av problemen relaterade till beräkningstiden som kan förbättras i framtiden.

Page generated in 0.1409 seconds