• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 10
  • Tagged with
  • 30
  • 21
  • 14
  • 13
  • 11
  • 11
  • 10
  • 10
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Hanford Laboratories and the growth of environmental research in the Pacific Northwest, 1943 to 1965

Ellis, D. Erik 17 December 2002 (has links)
The scientific endeavors that took place at Hanford Engineer Works, beginning in World War II and continuing thereafter, are often overlooked in the literature on the Manhattan Project, the Atomic Energy Commission, and in regional histories. To historians of science, Hanford is described as an industrial facility that illustrates the perceived differences between academic scientists on the one hand and industrial scientists and engineers on the other. To historians of the West such as Gerald Nash, Richard White, and Patricia Limerick, Hanford has functioned as an example of the West's transformation during in World War II, the role of science in this transformation, and the recurring impacts of industrialization on the western landscape. This thesis describes the establishment and gradual expansion of a multi-disciplinary research program at Hanford whose purpose was to assess and manage the biological and environmental effects of plutonium production. By drawing attention to biological research, an area in which Hanford scientists gained distinction by the mid 1950s, this study explains the relative obscurity of Hanford's scientific research in relation to the prominent, physics-dominated national laboratories of the Atomic Energy Commission. By the mid 1960s, with growing public concern over radiation exposure and changes in the government's funding patterns for science, Hanford's ecologically relevant research provided a recognizable and valuable identity for the newly independent, regionally-based research laboratory. With funding shifts favoring the biological and environmental sciences in the latter half of the twentieth-century, Hanford scientists were well prepared to take advantage of expanding opportunities to carve out a permanent niche on the border of American science. / Graduation date: 2003
12

Physiochemical mechanisms for the transport and retention of technetium

Jansik, Danielle P. 14 February 2014 (has links)
Understanding the transport and retention of radionuclides in the environment is important for protecting freshwater supplies and minimizing impact to biologic systems. Technetium-99 (Tc⁹⁹) is a radionuclide of interest due to its long half-life (2.13 x 10⁵ years) and toxicity. In the form of pertechnetate (TcO₄⁻), Tc is expected to move nearly unretarded in the subsurface. Under reducing conditions Tc can precipitate in low solubility Tc oxide (TcO₂·nH₂O) and/or Tc sulfide (Tc₂S[subscript x]) phases. The studies presented in this dissertation investigate the physiochemical mechanisms for the transport and retention of Tc. Transport studies determined that TcO₄⁻ would move at pore water velocity in unsaturated sediments. Geochemical studies of contaminated sediments determined that nearly ~ 25 % of the total Tc was retained in phases associated with iron oxide and aluminosilicate minerals, thus reducing the mobility of Tc. Studies of Tc₂S[subscript x] mineral phases, generated using nano Zero Valent Iron (nZVI) and sulfide (HS-) in sediments, determined that Tc could be stabilized in mineral phases as Tc₂S[subscript x] that were slower to reoxidize than TcO₂·nH₂O phases. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from Feb. 14, 2013 - Feb. 14, 2014
13

Wanapum Overview and Perspectives Developed During Tribal Narrative Workshop

The Wanapum Tribe, Stoffle, Richard, Arnold, Richard 06 1900 (has links)
The Greater than Class C (GTCC) Environmental Impact Statement (EIS) evaluated the potential impacts from the construction and operation of a new facility or facilities, or use of an existing facility, employing various disposal methods (geologic repository, intermediate depth borehole, enhanced near surface trench, and above grade vault) at six federal sites and generic commercial locations. For three of the locations being considered as possible locations, consulting tribes were brought in to comment on their perceptions on how GTCC low level radioactive waste would affect Native American resources (land, water, air, plants, animals, archaeology, etc.) short and long term. The consulting tribes produced essays that were incorporated into the EIS and these essays are in turn included in this collection. This essay was produced by the Wanapum Tribe for the Hanford Site.
14

Decomposition mechanisms related to Hanford waste: characterization of NO¯ from organic nitroxyl derivatives

Belcher, Marcus Anthony 08 1900 (has links)
No description available.
15

Effect of moisture content on the desorption of carbon tetrachloride from Hanford silt

Saldanha, Sachin Mervin. January 2009 (has links) (PDF)
Thesis (M.S. in environmental engineering)--Washington State University, May 2009. / Title from PDF title page (viewed on June 19, 2009). "Department of Civil and Environmental Engineering." Includes bibliographical references (p. 58-61).
16

From Salisbury to senator an analysis of Elizabeth Dole's political style and rhetorical persona in public and political discourse /

Friedman, Rachel B. January 2009 (has links)
Thesis (Ph.D.)--University of Nebraska-Lincoln, 2009. / Title from title screen (site viewed January 12, 2010). PDF text: vii, 219 p. ; 555 K. UMI publication number: AAT 3360494. Includes bibliographical references. Also available in microfilm and microfiche formats.
17

Determination of effective doses from radionuclides in the Columbia River sediments

Wu, Renpo 25 August 1994 (has links)
Graduation date: 1995
18

The use of carbonation and fractional evaporative crystallization in the pretreatment of Hanford nuclear wastes

Dumont, George Pierre, Jr. 29 June 2007 (has links)
The purpose of this work was to explore the use of fractional evaporative crystallization as a technology that can be used to separate medium-curie waste from the Hanford Site tank farms into a high-curie waste stream, which can be sent to a Waste Treatment and Immobilization Plant (WTP), and a low-curie waste stream, which can be sent to Bulk Vitrification. Experimental semi-batch crystallizations of sodium salts from simulant solutions of double-shell tank (DST) feed demonstrated that the recovered crystalline product met the purity requirement for exclusion of cesium and nearly met the requirement on sodium recovery. Batch fractional evaporative crystallization involves the removal of multiple solutes from a feed solution by the progressive achievement of supersaturation (through evaporation) and concomitant nucleation and growth of each species. The slurry collected from each of these crystallization stages was collected and introduced to filtration and washing steps. The product crystals obtained after washing were sampled for analysis by polarized light microscopy (PLM), dried, and sieved. The PLM results aided in identification of species crystallized in each stage. Carbonation was used as a supplemental method to evaporative crystallization in order to increase the sodium recovery in DST experiments. Carbonation was necessary due to the high aluminum ion concentration in the solution, which leads to formation of a viscous gel during evaporation. This gel was avoided by reacting carbon dioxide with hydroxyl ions, which modified the system behavior. Through two stages of carbonation, each followed by evaporation, the effect of carbonation on sodium recovery was demonstrated.
19

The Effect of Microbial Growth on the Spectral Induced Polarization Response in Hanford Vadose Zone Sediment in the Presence of Autunite

Garcia, Alejandro 22 June 2018 (has links)
Uranium contamination of the subsurface remains a significant problem at the Department of Energy Hanford site. A series of column experiments were conducted on Hanford sediment saturated with simulated groundwater to study the effects of aqueous bicarbonate and microbial growth on the mobility of Uranium. Spectral induced polarization (SIP) measurements in the columns were conducted concurrently with pore water sampling in order to monitor changes occurring inside the sediment after the initiation of microbial growth induced by glucose injection. The microbial growth caused significant increases in the real component of the complex conductivity and is the result of ion release into the pore fluid. In addition, an increase in the imaginary conductivity was observed at low frequencies (Hz), which may be due to biotic processes. Due to the use of natural sediment, the SIP response is complex and difficult to understand. However, results across all columns with microbial growth are consistent. Pore water testing showed that microbial growth leads to sudden increases in uranium concentrations; however, microbes also eventually create reducing conditions in the sediment which transforms soluble U6+ to insoluble U4+. Bicarbonate leads to significant increases in uranium concentrations likely due to the formation of mobile uranyl carbonate complexes. For the purposes of field scale remediation, microbial growth in an oxic environment should be avoided. However, within reducing conditions present in the deep vadose zone and phreatic zone, microbial growth seems unlikely to significantly increase uranium mobility.
20

Diffusion of selected radionuclides through Hanford Trench 8 soil material

Schwab, Kristen E. 17 October 2003 (has links)
Shallow land burial in vadose zone sediment at the Hanford Site in Washington is being considered for the disposal of Category 3 low-level waste. A series of column experiments were conducted to evaluate and model the performance of the soil surrounding the trench encasement material for iodine-129 and technetium-99 by evaluating the mobility of these nuclides through the surrounding Trench 8 soil. These experiments were designed to determine effective diffusion coefficients for ¹²⁷I and ⁹⁹Tc through the following system: from contaminated soil into uncontaminated soil. The tests were performed at two different soil moisture contents to evaluate the effects of soil moisture content on diffusion. This thesis describes the experimental methods and presents the diffusion results for this media type. It was found that as the moisture content increased the diffusion increased by an order of magnitude (iodine 4% and 7% moisture content soil effective diffusion coefficients were 8.90E-08 and 1.84E-07 cm²/s respectively, and technetium 4% and 7% moisture content soil diffusion coefficients were 7.61E-08 and 1.45E-07 cm²/s respectively). These results, in combination with other diffusion systems results, will allow the development of release models and contaminant migration models that can be used to estimate the long-term fate of dose-controlling radionuclides that are or will be buried in solid waste burial trenches. / Graduation date: 2004

Page generated in 0.0443 seconds