• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expression of Oncogenic Antigen 519 (OA-519) in Prostate Cancer Is a Potential Prognostic Indicator

Shurbaji, M. S., Kuhajda, F. P., Pasternack, G. R., Thurmond, T. S. 01 May 1992 (has links)
Predicting the prognosis of patients with prostate cancer is a clinically important problem. Previous studies have indicated that the expression of haptoglobin-related protein epitopes in samples of breast cancer in early stages was associated with earlier relapses and higher risk for tumor recurrence. Oncogenic antigen 519 (OA-519) is the new marker designation for molecules expressing haptoglobin-related protein epitopes. The objective of this immunohistochemical study was to examine OA-519 expression in prostate cancer samples and its relationship to the established prognostic indicators of tumor grade, tumor volume, and clinical stage. Forty-two consecutive tissue samples of prostate adenocarcinoma were examined using an affinity- purified anti-OA-519 antibody. Twenty specimens (48%) tested positive, whereas 22 (52%) tested negative. No staining was observed in normal or hyperplastic prostate tissue. Staining occurred in 6 of 9 (67%) grade III, 14 of 23 (61%) grade II, and in none of 10 (0%) grade I cases (I vs. II and/or III: Fisher exact test, P < 0.006). Twenty-three of the 42 samples were transurethral resection specimens with cancer; 11 (48%) of these tested positive. The mean percentage of tissue chips with tumor, a measure of tumor volume, was significantly higher in the positive group (57%) than in the negative group (15%) (P = 0.004). The proportion of positively stained cases increased with advancing clinical stage, with 25% of Stage A cases expressing OA-519, and 46%, 67%, and 64% of Stages B, C, and D, respectively, expressing OA-519. OA-519 expression correlates with higher tumor grades, larger tumors, and possibly with advanced stage, and thus, it is potentially of prognostic value in prostate cancer.
2

The Trypanosome Lytic Factor of Human Serum: a Trojan Horse

Vanhollebeke, Benoit 01 December 2008 (has links)
THE TRYPANOLYTIC FACTOR OF HUMAN SERUM: A TROJAN HORSE African trypanosomes, the prototype of which is Trypanosoma brucei, are protozoan parasites of huge clinical, veterinary and economical importance. They develop in the body fluids of various mammals (including humans) where they face and manipulate many different aspects of the immune system. The extent of this interplay is pivotal to both host and parasite survival, and depending on parasite virulence and host susceptibility, infection duration ranges from some months to several years. At the end, host survival is invariably compromised. Humans and few other primates provide however a striking exception to this fatal outcome. They are indeed fully protected against most trypanosome infections through the presence in their blood of a so-called trypanosome lytic factor (TLF). The TLF is known to circulate mainly in the form of a high density lipoprotein particle characterized by the simultaneous presence of two primate-specific proteins: haptoglobin-related protein (Hpr) and apolipoprotein L-I (apoL-I). We have contributed to delineate the respective roles played by Hpr and apoL-I in the lysis process. ApoL-I was shown to be the exclusive toxin of the TLF. In its absence humans get fully susceptible to any trypanosome infection. The toxin was shown to kill the parasite after endocytosis through the generation of ionic pores in the lysosomal membrane. Those pores dissipate membrane potential and trigger the influx of chloride ions from the cytoplasm into the lysosomal compartment, leading to an eventually fatal uncontrolled osmotic phenomenon. ApoL-I efficient delivery to the parasite relies on Hpr. African trypanosomes indeed fulfil their heme nutritional requirements by receptor-mediated internalization of the complex formed by haptoglobin, an evolutionary conserved acute-phase protein, and hemoglobin, resulting from physiological intravascular hemolysis. This heme uptake by the auxotrophic parasites contributes to both growth rate and resistance against host oxidative burst. In human serum, the trypanosome receptor is unable to discriminate between Hp and the closely related TLF-bound Hpr, explaining TLF efficient endocytosis. As such, the TLF acts as a Trojan horse, killing the parasite from inside the cell after having deceived its vigilance through the high similarity between heme-delivering haptoglobin and toxin-associated Hpr.
3

The trypanosome lytic factor of human serum, a Trojan horse

Vanhollebeke, Benoît 01 December 2008 (has links)
The trypanolytic factor of human serum :a trojan horse.<p><p><p>African trypanosomes, the prototype of which is Trypanosoma brucei, are protozoan parasites of huge clinical, veterinary and economical importance. They develop in the body fluids of various mammals (including humans) where they face and manipulate many different aspects of the immune system. The extent of this interplay is pivotal to both host and parasite survival, and depending on parasite virulence and host susceptibility, infection duration ranges from some months to several years. At the end, host survival is invariably compromised.<p><p>Humans and few other primates provide however a striking exception to this fatal outcome. They are indeed fully protected against most trypanosome infections through the presence in their blood of a so-called trypanosome lytic factor (TLF). The TLF is known to circulate mainly in the form of a high density lipoprotein particle characterized by the simultaneous presence of two primate-specific proteins: haptoglobin-related protein (Hpr) and apolipoprotein L-I (apoL-I).<p><p>We have contributed to delineate the respective roles played by Hpr and apoL-I in the lysis process.<p><p>ApoL-I was shown to be the exclusive toxin of the TLF. In its absence humans get fully susceptible to any trypanosome infection. The toxin was shown to kill the parasite after endocytosis through the generation of ionic pores in the lysosomal membrane. Those pores dissipate membrane potential and trigger the influx of chloride ions from the cytoplasm into the lysosomal compartment, leading to an eventually fatal uncontrolled osmotic phenomenon. <p><p>ApoL-I efficient delivery to the parasite relies on Hpr. African trypanosomes indeed fulfil their heme nutritional requirements by receptor-mediated internalization of the complex formed by haptoglobin, an evolutionary conserved acute-phase protein, and hemoglobin, resulting from physiological intravascular hemolysis. This heme uptake by the auxotrophic parasites contributes to both growth rate and resistance against host oxidative burst. In human serum, the trypanosome receptor is unable to discriminate between Hp and the closely related TLF-bound Hpr, explaining TLF efficient endocytosis.<p><p>As such, the TLF acts as a Trojan horse, killing the parasite from inside the cell after having deceived its vigilance through the high similarity between heme-delivering haptoglobin and toxin-associated Hpr. <p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0937 seconds