• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementation and analysis of a virtual platform based on an embedded system / Implementation och analys av en virtuell plattform baserat på ett inbyggt system

Sandstedt, Adam January 2014 (has links)
The complexity among embedded systems has increased dramatically in recent years. During the same time has the capacity of the hardware grown to astonishing levels. These factors have contributed to that software has taken a leading role and time-consuming role in embedded system development.Compared with regular software development, embedded development is often more restrained by factors such as hardware performance and testing capability. A solution to some of these problem has been proposed and that is a concept called virtual platforms. By emulating the hardware in a software environment, it is possible to avoid some of the problems associated with embedded software development. For example is it possible to execute a system faster than in reality and to provide a more controllable testing environment. This thesis presents a case study of an application specific virtual platform. The platform is based on already existing embedded system that is located in an industrial control system.  The virtual platform is able to execute unmodified application code at a speed twice of the real system, without causing any software faults. The simulation can also be simulated at even higher speed if some accuracy losses are regarded as acceptable.The thesis presents some tools and methods that can be used to model hardware on a functional level in an software environment. The thesis also investigates the accuracy of the virtual platform by comparing it with measurements from the physical system. In this case are the measurements mainly focused of the data transactions in a controller area network bus (CAN).
2

Attitude Control Hardware and Software for Nanosatellites

Lukaszynski, Pawel 05 December 2013 (has links)
The analysis, verification and emulation of attitude control hardware for nanosatellite spacecraft is described. The overall focus is on hardware that pertains to a multitude of missions currently under development at the University of Toronto Institute for Aerospace Studies - Space Flight Laboratory. The requirements for these missions push the boundaries of what is currently the accepted performance level of attitude control hardware. These new performance envelopes demand new acceptance test methods which must verify the performance of the attitude control hardware. In particular, reaction wheel and hysteresis rod actuators are the focus. Results of acceptance testing are further employed in post spacecraft integration for hardware emulation. This provides for a reduced mission cost as a function of reduced spare hardware. The overall approach provides a method of acceptance testing to new performance envelopes with the benefit of cost reduction with hardware emulation for simulations during post integration.
3

Attitude Control Hardware and Software for Nanosatellites

Lukaszynski, Pawel 05 December 2013 (has links)
The analysis, verification and emulation of attitude control hardware for nanosatellite spacecraft is described. The overall focus is on hardware that pertains to a multitude of missions currently under development at the University of Toronto Institute for Aerospace Studies - Space Flight Laboratory. The requirements for these missions push the boundaries of what is currently the accepted performance level of attitude control hardware. These new performance envelopes demand new acceptance test methods which must verify the performance of the attitude control hardware. In particular, reaction wheel and hysteresis rod actuators are the focus. Results of acceptance testing are further employed in post spacecraft integration for hardware emulation. This provides for a reduced mission cost as a function of reduced spare hardware. The overall approach provides a method of acceptance testing to new performance envelopes with the benefit of cost reduction with hardware emulation for simulations during post integration.

Page generated in 0.1111 seconds