Spelling suggestions: "subject:"raro objects"" "subject:"caro objects""
1 |
Shock Excited 1720 MHz MasersDe Witt, Aletha 31 December 2005 (has links)
1720 MHz OH masers have been detected towards a number of supernova remnants (SNRs) at the shock interface where the SNR slams into the interstellar medium. Models indicate that these masers are shock excited and can only be produced under tight constraints of the physical conditions. In particular, the masers can only form behind a C-type shock. Jets from newlyformed
stars plow into the surrounding gas, creating nebulous regions known as Herbig Haro (HH) objects. Signatures of C-type shocks have been found in many HH objects. If conditions behind the shock fronts of HH objects are able to support 1720 MHz OH masers they would be a usefull diagnostic tool for star formation. A survey toward HH objects detected a number of 1720 MHz OH lines in emission, but future observations with arrays are required
to confirm the presence of masers. / Physics / M.Sc. (Astronomy)
|
2 |
Shock Excited 1720 MHz MasersDe Witt, Aletha 31 December 2005 (has links)
1720 MHz OH masers have been detected towards a number of supernova remnants (SNRs) at the shock interface where the SNR slams into the interstellar medium. Models indicate that these masers are shock excited and can only be produced under tight constraints of the physical conditions. In particular, the masers can only form behind a C-type shock. Jets from newlyformed
stars plow into the surrounding gas, creating nebulous regions known as Herbig Haro (HH) objects. Signatures of C-type shocks have been found in many HH objects. If conditions behind the shock fronts of HH objects are able to support 1720 MHz OH masers they would be a usefull diagnostic tool for star formation. A survey toward HH objects detected a number of 1720 MHz OH lines in emission, but future observations with arrays are required
to confirm the presence of masers. / Physics / M.Sc. (Astronomy)
|
3 |
The ALMA View of the OMC1 Explosion in OrionBally, John, Ginsburg, Adam, Arce, Hector, Eisner, Josh, Youngblood, Allison, Zapata, Luis, Zinnecker, Hans 03 March 2017 (has links)
Most massive stars form in dense clusters where gravitational interactions with other. stars may be common. The two nearest forming massive stars, the BN object and Source I, located behind the Orion Nebula, were ejected with velocities of similar to 29 and similar to 13 km s(-1) about 500 years ago by such interactions. This event generated an explosion in the gas. New ALMA observations show in unprecedented detail, a roughly spherically symmetric distribution of over a hundred (CO)-C-12 J = 2-1 streamers with velocities extending from V-LSR = -150 to +145 km s(-1) The streamer radial velocities increase (or decrease) linearly with projected distance from the explosion center, forming a '' Hubble Flow '' confined to within 50 ''. of the explosion center. They point toward the high proper-motion, shock-excited H-2 and [Fe II] '' fingertips '' and lower-velocity CO in the H-2 wakes comprising Orion's '' fingers.'' In some directions, the H-2 '' fingers '' extend more than a factor of two farther from the ejection center than the CO streamers. Such deviations from spherical symmetry may be caused by ejecta running into dense gas or the dynamics of the N-body interaction that ejected the stars and produced the explosion. This similar to 10(48) erg event may have been powered by the release of gravitational potential energy associated with the formation of a compact binary or a protostellar merger. Orion may be the prototype for a new class of stellar explosiozn responsible for luminous infrared transients in nearby galaxies.
|
4 |
EVOLUTION OF MASS OUTFLOW IN PROTOSTARSWatson, Dan M., Calvet, Nuria P., Fischer, William J., Forrest, W. J., Manoj, P., Megeath, S. Thomas, Melnick, Gary J., Najita, Joan, Neufeld, David A., Sheehan, Patrick D., Stutz, Amelia M., Tobin, John J. 29 August 2016 (has links)
We have surveyed 84 Class 0, Class I, and flat-spectrum protostars in mid-infrared [Si II], [Fe II], and [S I] line emission, and 11 of these in far-infrared [O I] emission. We use the results to derive their mass. outflow rates, (M) over dot(w). Thereby we observe a strong correlation of (M) over dot(w) with bolometric luminosity, and with the inferred mass accretion rates of the central objects, (M) over dot(a), which continues through the Class 0 range the trend observed in Class II young stellar objects. Along this trend from large to small mass. flow rates, the different classes of young stellar objects lie in the sequence Class 0-Class I/flat-spectrum-Class II, indicating that the trend is an evolutionary sequence in which (M) over dot(a) and (M) over dot(w) decrease together with increasing age, while maintaining rough proportionality. The survey results include two that. are key tests of magnetocentrifugal outflow-acceleration mechanisms: the distribution of the outflow/accretion branching ratio b = (M) over dot(w)/(M) over dot(a), and limits on the distribution of outflow speeds. Neither rules out any of the three leading outflow-acceleration, angular-momentum-ejection mechanisms, but they provide some evidence that disk winds and accretion-powered stellar winds (APSWs) operate in many protostars. An upper edge observed in the branching-ratio distribution is consistent with the upper bound of b = 0.6 found in models of APSWs, and a large fraction (31%) of the sample have a. branching ratio sufficiently small that only disk winds, launched on scales as large as several au, have been demonstrated to account for them.
|
5 |
Proper motions of collimated jets from intermediate-mass protostars in the Carina NebulaReiter, Megan, Kiminki, Megan M., Smith, Nathan, Bally, John 10 1900 (has links)
We present proper motion measurements of 37 jets and HH objects in the Carina Nebula measured in two epochs of H alpha images obtained similar to 10 yr apart with Hubble Space Telescope/Advanced Camera for Surveys (ACS). Transverse velocities in all but one jet are faster than greater than or similar to 25 km s(-1), confirming that the jet-like H alpha features identified in the first epoch images trace outflowing gas. Proper motions constrain the location of the jet-driving source and provide kinematic confirmation of the intermediate-mass protostars that we identify for 20/37 jets. Jet velocities do not correlate with the estimated protostar mass and embedded driving sources do not have slower jets. Instead, transverse velocities (median similar to 75 km s(-1)) are similar to those in jets from low-mass stars. Assuming a constant velocity since launch, we compute jet dynamical ages (median similar to 10(4) yr). If continuous emission from inner jets traces the duration of the most recent accretion bursts, then these episodes are sustained longer (median similar to 700 yr) than the typical decay time of an FU Orionis outburst. These jets can carry appreciable momentum that may be injected into the surrounding environment. The resulting outflow force, dp/dt, lies between that measured in low- and high-mass sources, despite the very different observational tracers used. Smooth scaling of the outflow force argues for a common physical process underlying outflows from protostars of all masses. This latest kinematic result adds to a growing body of evidence that intermediate-mass star formation proceeds like a scaled-up version of the formation of low-mass stars.
|
6 |
Radio astronomy techniques : the use of radio instruments from single dish radio telescopes to radio interferometersDe Witt, Aletha 03 1900 (has links)
New radio telescopes under development, will significantly enhance the capabilities
of radio astronomy in the Southern Hemisphere. South Africa, in
particular, is actively involved in the development of a new array (MeerKAT)
as well as in the expansion of existing very long baseline interferometer arrays
in the south. Participation in these new developments demands a thorough
understanding of radio astronomy techniques, and data analysis, and this
thesis focusses on two projects with the aim of gaining such experience.
The Southern Hemisphere very long baselines array is not well served
with calibrator sources and there are significant gaps in the present calibrator
distribution on the sky. An adequately dense, well distributed, set of strong,
compact calibrator or reference sources is needed. With this in mind, observations
using the Southern Hemisphere long baseline array were conducted to
investigate a sample of candidate calibrator sources. The compactness of the
sources was investigated and new potential calibrators have been identified.
Single antenna radio spectroscopy of OH masers has identified sources
of 1720 MHz emission associated with supernova remnants at the shock interface
between the expanding supernova remnant and a molecular cloud.
Models indicate that these masers are shock excited and can only be produced
under tight physical constraints. Out
ows from newly-formed stars
create nebulous regions known as Herbig-Haro objects when they interact
with the surrounding medium, and these regions are potentially similar to
those seen in supernova remnants. If conditions behind the shock fronts of
Herbig-Haro objects are able to support 1720-MHz OH masers they could
be a useful diagnostic tool for star formation. A survey toward Herbig-Haro
objects using a single-dish radio telescope did detect 1720-MHz OH lines in
emission, but neither their spectral signature nor follow-up observations with
the Very Large Array showed evidence of maser emission. / Mathematical Sciences / Ph.D. (Astronomy)
|
7 |
Radio astronomy techniques : the use of radio instruments from single dish radio telescopes to radio interferometersDe Witt, Aletha 03 1900 (has links)
New radio telescopes under development, will significantly enhance the capabilities
of radio astronomy in the Southern Hemisphere. South Africa, in
particular, is actively involved in the development of a new array (MeerKAT)
as well as in the expansion of existing very long baseline interferometer arrays
in the south. Participation in these new developments demands a thorough
understanding of radio astronomy techniques, and data analysis, and this
thesis focusses on two projects with the aim of gaining such experience.
The Southern Hemisphere very long baselines array is not well served
with calibrator sources and there are significant gaps in the present calibrator
distribution on the sky. An adequately dense, well distributed, set of strong,
compact calibrator or reference sources is needed. With this in mind, observations
using the Southern Hemisphere long baseline array were conducted to
investigate a sample of candidate calibrator sources. The compactness of the
sources was investigated and new potential calibrators have been identified.
Single antenna radio spectroscopy of OH masers has identified sources
of 1720 MHz emission associated with supernova remnants at the shock interface
between the expanding supernova remnant and a molecular cloud.
Models indicate that these masers are shock excited and can only be produced
under tight physical constraints. Out
ows from newly-formed stars
create nebulous regions known as Herbig-Haro objects when they interact
with the surrounding medium, and these regions are potentially similar to
those seen in supernova remnants. If conditions behind the shock fronts of
Herbig-Haro objects are able to support 1720-MHz OH masers they could
be a useful diagnostic tool for star formation. A survey toward Herbig-Haro
objects using a single-dish radio telescope did detect 1720-MHz OH lines in
emission, but neither their spectral signature nor follow-up observations with
the Very Large Array showed evidence of maser emission. / Mathematical Sciences / Ph.D. (Astronomy)
|
Page generated in 0.0509 seconds