• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 580
  • 124
  • 76
  • 66
  • 54
  • 41
  • 38
  • 35
  • 17
  • 10
  • 10
  • 8
  • 7
  • 7
  • 6
  • Tagged with
  • 1312
  • 341
  • 245
  • 236
  • 148
  • 128
  • 121
  • 121
  • 120
  • 119
  • 94
  • 92
  • 88
  • 83
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Moving Towards an Improved Liquefaction Hazard Framework: Lessons Resulting From the 2010-2011 Canterbury, New Zealand, Earthquake Sequence

Maurer, Brett 24 October 2016 (has links)
The 2010-2011 Canterbury, New Zealand, Earthquake Sequence (CES) resulted in a liquefaction dataset of unprecedented size and quality, presenting a truly unique opportunity to assess and improve the efficacy of liquefaction-analytics in the field. Towards this end, the study presented herein develops and analyzes a database of 10,000 high-quality liquefaction case histories resulting from the CES. The objectives of these analyses are varied, but underlying each is the desire to more accurately assess liquefaction hazard for civil infrastructure (i.e., to predict both the occurrence and damage-potential of soil liquefaction). Major contributions from this work include, but are not limited to: (1) the Liquefaction Potential Index (LPI), the state-of-practice framework for assessing liquefaction hazard, is shown to produce erroneous predictions for a significant percentage of the assessed case histories; (2) the cause of poor predictions is rigorously investigated and specific shortcomings of the LPI framework are identified; (3) based on the limitations identified, and using insights from historical data, a revised liquefaction hazard framework is developed; and (4) the revised framework is shown to assess liquefaction hazard more efficiently relative to both LPI and a competing alternative framework newly proposed in the literature. Ultimately, significant room for improvement remains with respect to accurate assessment of liquefaction hazard. The findings presented in this dissertation thus form the basis for future development of a further-improved framework. Moreover, a methodology is proposed by which improvements can be measured in a standardized and objective manner. / Ph. D.
152

Quarry Workers' Hazard Identification, Severity Interpretation, and Prevention Strategies

Bae, Hwangbo 29 August 2019 (has links)
The surface-mining worker fatalities are unacceptably high as compared to other private industries in United States such as construction, manufacturing, agriculture, forestry, fishing and hunting. Although many studies about generating a safe work environment and developing safety training through intervention modules have tried to reduce the number of worker fatalities by utilizing an administrative approach to the development of safety controls, a rigorous study about understanding craftworkers' perceptions of a safe work environment is lacking. This study particularly investigated quarry workers' safety behaviors regarding work hazards by adapting findings from construction safety research because construction and mining industries have similarities in work hazards and environment. Despite their similarities, the work fatality rate in the mining industry is greater than in the construction industry (BLS, 2018). To gain a greater understanding of how quarry workers identify and interpret work hazards and employ strategies to prevent accidents, this study explored quarry workers' perceptions of work hazards (i.e., hazard identification, severity interpretation) and their preventive strategies to develop a safer working environment at the workplace. To accomplish this, a single descriptive case study was conducted with multiple sources of data such as interviews with photo elicitation, field notes, site photographs, and precursory meeting with safety managers. These sources of data were used to investigate quarry workers' identification and interpretation skills and utilization of preventive strategies. This study will contribute to improve safety of workers by incorporating workers' perceptions of work hazards and by exploring their experience to the development of safety training. / Master of Science / The surface-mining industry is one of the private industries with a high fatality rate in the United States. To reduce the number of accidents and help workers to perform safely in the workplace, previous studies have investigated different strategies to promote workers’ safety performance. These strategies include safety interventions such as safety training and safety inspections. However, a lack of study exists to understand workers’ behaviors and perceptions regarding safety and work hazards. To better explore workers’ behaviors and perceptions, this study adapted findings from construction safety research. Because the number of surface-mining safety research is relatively small and the work environment and types of work hazards in both the surface-mining and construction industries share similarities, the findings in construction safety research can be used to promote a safer workplace for surface-mine workers. By adapting findings in construction safety research, this study further investigated workers’ perceptions of work hazards, which is operationalized in two approaches: hazard identification and severity interpretation. This study also examines workers’ execution of strategies to prevent accidents. These observations were gathered through the utilization of a case study of quarry, which gave a guideline to the researcher to collect data from multiple sources (e.g., precursory meeting with safety managers, field notes, photographs, interviews) and analyze the findings by primarily using participants’ responses in the interviews with photo elicitation. This study will contribute to improve a safer workplace in the surface mining industry by incorporating workers’ perceptions and experience and by emphasizing workers’ involvement in tandem with company commitment to develop safety training.
153

Hypocenter Locations and Focal Mechanism Solutions of Earthquakes in the Epicentral Area of the 1886 Charleston, SC, Earthquake

Hardy, Anna Corella 03 February 2015 (has links)
The Charleston earthquake of 1886 was one of the largest shocks to occur on the eastern coast of North America. The geological cause has long been a controversial issue and a variety of source models have been proposed. Previous potential field modeling and reinterpretation of seismic reflection and well data collected in the early 1980s indicate that the crust between approximately 1 and 4.5 km depth is comprised primarily of Mesozoic mafic rocks, with extensive faulting that is spatially coincident with modern seismicity in the epicentral area (Chapman and Beale, 2010). This thesis proposes a new and testable hypothesis concerning the fault source of the 1886 shock that is very different from all previous interpretations. It is based on data collected during 2011-2012 from a local seismic network deployment in the immediate epicentral area. The 8-station temporary network was designed to better constrain earthquake hypocenter locations and focal mechanisms. Hypocenter locations of 134 earthquakes indicate a south-striking, west-dipping seismogenic zone in the upper 12 km of the crust. Over 40% of the 66 well-constrained focal mechanisms show reverse faulting on approximately north-south trending nodal planes, consistent with the orientation of the tabular hypocenter distribution. I offer the following hypothesis: The 1886 shock occurred by compressional reactivation of a major, south-striking, west-dipping early Mesozoic extensional fault. The modern seismicity can be regarded as a long-term aftershock sequence that is outlining the 1886 damage zone. Variability of shallow focal mechanisms is due to the complex early Mesozoic fault structure in the upper 4-5 km. / Master of Science
154

Long-term Effects of Prescribed Fire and Fire Surrogate Treatments on Southern Appalachian Mountain Forest Soil Chemistry

Dukes, Christopher Jered 27 January 2020 (has links)
As a response to rising wildfire hazard and forest structure and composition concerns, the National Fire and Fire Surrogate Study was established in 2000 to determine how fuel reduction and ecosystem restoration techniques might affect ecosystem properties and processes across the United States. Soil chemistry and the southern Appalachian Mountains were an ecosystem property and ecoregion of interest, respectively. Treatments utilized at this site included: prescribed fire alone (3 burns), mechanical cutting of understory shrubs and midstory trees alone (2 cuttings), and a combination of the two (2 installations). Soils were sampled in 2018 to determine potential treatment impacts for: O horizon and mineral soil (0-10 cm depth) carbon (C), nitrogen (N), carbon:nitrogen (C:N) and mineral soil calcium (Ca), magnesium (Mg), phosphorus (P), potassium (K), and pH. Results suggested slight, but statistically significant changes in O horizon C and N and mineral soil C, N, C:N, Ca, and P values from 2001-2018 differed statistically between the treatments. Soil responses differed significantly between the replications utilized in this study and also did not fully agree with results from previous sampling that occurred following the first implementation of these treatments. This research highlights the spatial and temporal nature of soil responses to management. When considered with previously reported vegetation and fuels results from this site, it appeared that prescribed burning with and without mechanical cutting presented the most promise to achieve ecosystem restoration and fuel reduction properties without altering forest soil chemistry. / Master of Science / Fire was historically present in the southern Appalachian Mountains from both natural and anthropogenic sources. A common natural cause resulted from lightning ignitions while some common anthropogenic sources resulted from Native American ignitions. Their fire-use goals included understory clearing, reduction of pests and diseases, hunting, and even warfare. These practices were adopted by early European settlers and were implemented regularly across the landscape through the late 19th century. In the early 20th century, however, fire exclusion policies were implemented across broad acreages of the continental United States. Over 80 years later, such policies led to forests that have been altered from their historic composition. Some of these alterations include changes to plant species composition. In portions of eastern United States forests, fire intolerant, shade tolerant species now exert a dominant influence beyond what would be expected in a frequently altered state. This process, referred to as mesophication, is a positive-feedback cycle that changes the composition of the forest floor, as well, as a result of the vegetative composition alterations. This cycle has led to substantial forest floor fuel accumulations comprised of vegetative litter and duff. Essentially, this policy shift and subsequent fuel alteration has potentially increased wildfire hazard when dry weather conditions and ignitions coalesce. In 2000, the National Fire and Fire Surrogate Study (FFSS) was designed and implemented to study ecosystem responses to fuel reduction treatments in 13 locations across the United States. One of these locations was the southern Appalachian Mountains near Hendersonville, North Carolina. For this particular study, soil chemistry was the observed ecosystem trait. The treatments included untreated control, prescribed fire, mechanical cutting of vegetation, and a combination of prescribed fire and cutting. From 2001-2018, 4 prescribed burns, 2 cutting treatments, and 2 combination treatments have been implemented. Prior to the first treatments in 2001, soils were sampled to determine pre-treatment soil chemistry. In 2018, soils were re-sampled to determine the potential long-term impacts of repeated implementations of these management techniques on forest soil chemistry. Overall, the results suggested that forest soil chemistry was altered in ways that do not appear biologically significant and may in fact fail to alter soils in ways that might benefit and sustain long-term ecological restoration objectives. Continued treatment applications may be necessary to obtain more desirable conditions.
155

Effects of Increases in Mental Workload on Avoidance of Ground Hazards

Glumm, Monica Marie 05 January 2006 (has links)
New sensor and display technologies are expected to enhance the performance of soldiers by providing them more information about the battlefield. However, there is concern that greater quantities of information and increases in mental workload might cause distraction, reduce attention to dangers in the immediate environment, and threaten soldier survival. The purpose of this laboratory investigation was to quantify the effects of increases in mental workload on one of the soldier's most basic tasks --- avoiding ground hazards while walking. The participants were 12 U.S. Army infantry soldiers. The study was conducted on a treadmill that was modified to provide the participants a view of impending ground hazards up to 5 meters forward of their walking position. The study was a 2X3 fixed factor design with two levels of terrain difficulty (No Hazards and Hazards) and three levels of mental workload (No Load, Moderate load, and High load), all as within-subject effects. Mental workload was increased from the "No Load" to a "Moderate" level by requiring the participants to perform a mental arithmetic task while walking. Mental workload was increased from the "Moderate" to the "High" level of load by increasing the difficulty of arithmetic problems. The dependent variables included time and error in the performance of the mental arithmetic task, the mean and standard deviation in step length and step rate, the number of ground hazards contacted, and subjective ratings of workload. The participants" scores on the Armed Forces Qualification Test (AFQT) and subtests of the Armed Services Vocational Aptitude Battery (ASVAB) related to arithmetic skills were also obtained. The results of the investigation indicated that when the participants were required to avoid hazards, step length decreased and step rate increased, as was expected. Both measures of gait increased in variability. Subjective ratings of physical demand and effort obtained across the three levels of mental workload increased significantly, along with perceptions of workload associated with a perceived decline in performance. Subjective ratings obtained across the two levels of terrain difficulty indicated that ratings of mental demand and effort increased with each increase in level of mental workload. When the participants were confronted with the more difficult arithmetic problems at the "High" level of mental workload, time and error in performing the mental arithmetic task increased as did ratings of temporal demand, frustration, and workload attributable to a perceived decline in performance; however, subjective ratings of physical demand decreased. Interactions found between terrain difficulty and mental workload indicated that differences in ratings of performance and overall workload scores between the two levels of terrain difficulty decreased significantly between the "No Load" and the "Moderate" level of mental workload, and converged at the "High" level of mental load. Although relationships were found between perceived workload, gait, and performance of the mental arithmetic and hazard avoidance tasks, the analysis did not reveal a significant effect of mental workload on the number of hazards contacted. Some participants tended to contact more hazards at the "High" level of mental workload than at the "No Load" or the "Moderate" levels, as expected. However, other participants tended to contact more hazards at the "Moderate" level of mental load than at either of the two extremes. Still other participants tended to contact more hazards at the "No Load" level of mental workload than at the "Moderate" or the "High" levels. Correlations were found between subjective ratings of workload, mental arithmetic performance, and scores on the AFQT and subtests of the ASVAB related to arithmetic skills, but no relationships were found between test scores and performance of the hazard avoidance task. However, when test scores were used as covariates in the analysis of mental arithmetic performance, the findings revealed that the number of correct responses to the arithmetic problems decreased when the participants were required to avoid hazards. The results of the study may support the belief that the allocation of limited resources will vary based on past experience and other individual differences, and that the amount of resources allocated to a task may be influenced by the difficulty of the task, criteria for performance, and the motivation of the individual. / Master of Science
156

Natural terrain landslide study in Lung Fu Shan area

Cheung, Wah-fung., 張華峰. January 2007 (has links)
published_or_final_version / abstract / Applied Geosciences / Master / Master of Science
157

Mapping vulnerability of infrastructure to destruction by slope failures on the Island of Dominica, WI a case study of Grand Fond, Petite Soufriere, and Mourne Jaune /

Andereck, Zachary Dean. January 2007 (has links)
Thesis (M.A.)--Miami University, Dept. of Geography, 2007. / Title from first page of PDF document. Includes bibliographical references (p. 67-72).
158

Numerical Simulation of Earthquake Ground Motions in the Upper Mississippi Embayment

Fernandez Leon, J. Alfredo 14 November 2007 (has links)
Earthquake ground motions are needed to evaluate the seismic performance of new and existing structures and facilities. In seismically active regions the strong ground motion recordings database is usually sufficiently large to physically constrain the earthquake estimation for seismic risk assessment. However, in areas of low seismicity rate, particularly in the Central and Eastern United States, the estimation of strong ground motions for a specified magnitude, distance, and site conditions represents a significant issue. The only available approach for ground motion estimation in this region is numerical simulation. In this study, earthquake ground motions have been generated for the Upper Mississippi Embayment using a numerical wave propagation formulation. The effects of epistemic and aleatory uncertainties in the earthquake source, path, and site processes, the effect of non-linear soil behavior, and the effects of the geometry of the Embayment have been incorporated. The ground motions are intended to better characterize the seismic hazard in the Upper Mississippi Embayment by representing the amplitude and variability that might be observed in real earthquakes and to provide resources to evaluate the seismic risk in the region.
159

Simplified analysis of earthquake site response with particular application to low and moderate seismicity regions /

Sheikh, Md. Neaz. January 2001 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2002. / Includes bibliographical references (leaves 206-217).
160

A comparison of methodologies used to predict earthquake-induced landslides

Dreyfus, Daniel Kenoyer 07 July 2011 (has links)
The rigid sliding-block analysis introduced by Newmark in 1965 has become a popular method for assessing the stability of slopes during earthquakes. Estimates of sliding displacement calculated using this methodology serve as an index of seismic performance and are used for mapping seismic landslide hazard potential. The original approach of rigorously integrating ground acceleration time-histories to compute estimates of sliding displacement has been replaced by the use of simple, empirical models that predict displacement as a function of a slope's yield acceleration and one or more measures of ground shaking. To be useful the results of these models must be compared with observations of landslides from previous earthquakes. Seven different empirical models were evaluated by comparing predicted displacements with an inventory of observed landslides from the 1994 Northridge, California earthquake. Using a comprehensive set of ground motion data and shear strength properties from the Northridge earthquake, sliding displacements were calculated within a geographic information system (GIS) and the accuracy of each model was computed. The influence of factors such as landslide size, geologic unit, slope angle, and material strength on the prediction of landslides was also evaluated. The results were used to show that the accuracy of the predictive models depends less on the model used and more on the uncertainty in the model parameters, specifically the assigned shear strength values. Because current approaches do not take into account the spatial variability of strength within individual geologic units, the accuracy of the predictive models is controlled by the distribution of slope angles within observed and predicted landslide cells. Assigning overly conservative (low) shear strength values results in a higher percentage of landslides accurately identified, but also results in a large over-estimation of the seismic landslide hazard. / text

Page generated in 0.0726 seconds