• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 579
  • 124
  • 76
  • 66
  • 54
  • 40
  • 38
  • 35
  • 17
  • 10
  • 10
  • 8
  • 7
  • 7
  • 6
  • Tagged with
  • 1310
  • 341
  • 244
  • 235
  • 148
  • 127
  • 121
  • 121
  • 119
  • 118
  • 93
  • 92
  • 88
  • 83
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Application of Functional Safety Standards to the Electrification of a Vehicle Powertrain

Neblett, Alexander Mark Hattier 02 August 2018 (has links)
With the introduction of electronic control units to automotive vehicles, system complexity has increased. With this change in complexity, new standards have been created to ensure safety at the system level for these vehicles. Furthermore, vehicles have become increasingly complex with the push for electrification of automotive vehicles, which has resulted in the creation of hybrid electric and battery electric vehicles. The goal of this thesis is to provide an example of a hazard and operability analysis as well as a hazard and risk analysis for a hybrid electric vehicle. Additionally, the safety standards developed do not align well with educational prototype vehicles because the standards are designed for corporations. The hybrid vehicle supervisory controller example within this thesis demonstrates how to define a system and then perform system-level analytical techniques to identify potential failures and associated requirements. Ultimately, through this analysis suggestions are made on how best to reduce system complexity and improve system safety of a student built prototype vehicle. / Master of Science / With the introduction of electronic control units to automotive vehicles, system complexity has increased. With this change in complexity, new standards have been created to ensure safety at the system level for these vehicles. Furthermore, vehicles have become increasingly complex with the push for electrification of automotive vehicles, which has resulted in the creation of hybrid electric and battery electric vehicles. There are different ways for corporations to demonstrate adherence to these standards, however it is more difficult for student design projects to follow the same standards. Through the application of hazard and operability analysis and hazard and risk analysis on the hybrid vehicle supervisory controller, an example is provided for future students to follow the guidelines established by the safety standards. The end result is to develop system requirements to improve the safety of the prototype vehicle with the added benefit of making design changes to reduce the complexity of the student project.
182

Bank lending under IMF lending in a financial crisis : a sequential three-players moral hazard model /

Döbeli, Barbara. January 2001 (has links) (PDF)
Univ., Diss.--Zürich, 2001.
183

Development of an approach to liquefaction hazard zonation in the Philippines: application to Laoag City,Northern Philippines

Beroya, Mary Antonette A. January 2008 (has links)
published_or_final_version / Earth Sciences / Doctoral / Doctor of Philosophy
184

Västvärldens hantering av utvecklingsländernas skulder – att hjälpa eller att stjälpa

Piehl, Helena January 2008 (has links)
<p>Syftet med den här uppsatsen är att klargöra hur omvärlden hanterar det skuldproblem som blir allt mer omfattande i många utvecklingsländer. Många afrikanska länder söder om Sahara har fastnat i en fattigdomsfälla och är i desperat behov av förändring. Det globala finansiella systemet, med IMF i spetsen, har uppmärksammat detta problem och genom omstruktureringar och avskrivningar av skulderna vill de ge länderna en möjlighet att komma på fötter igen. Många svårigheter uppkommer när externa parter kommer in och ska lösa skuldproblemen åt länderna. Hänsyn måste tas till de som har givit lånen, såväl som till de skuldsatta ländernas ekonomiska struktur. Min frågeställning i denna uppsats rör hur det finansiella systemet hanterar skuldkrisen och om det skulle kunna finnas bättre alternativ till de processer som används idag. Genom min avhandling kom jag fram till att det kommer att krävas att en extern part är närvarande i förhandlingarna mellan långivare och låntagare för att undvika obalans och orättvisa. Det som framförallt måste ändras är dock att göra de huvudsakliga aktörerna, långivarna och låntagarna, mer delaktiga i processerna för att bättre resultat ska uppnås.</p>
185

Near-Fault Forward-Directivity Aspects of Strong Ground Motions in the 2010-11 Canterbury Earthquakes

Joshi, Varun Anil January 2013 (has links)
The purpose of this thesis is to conduct a detailed examination of the forward-directivity characteristics of near-fault ground motions produced in the 2010-11 Canterbury earthquakes, including evaluating the efficacy of several existing empirical models which form the basis of frameworks for considering directivity in seismic hazard assessment. A wavelet-based pulse classification algorithm developed by Baker (2007) is firstly used to identify and characterise ground motions which demonstrate evidence of forward-directivity effects from significant events in the Canterbury earthquake sequence. The algorithm fails to classify a large number of ground motions which clearly exhibit an early-arriving directivity pulse due to: (i) incorrect pulse extraction resulting from the presence of pulse-like features caused by other physical phenomena; and (ii) inadequacy of the pulse indicator score used to carry out binary pulse-like/non-pulse-like classification. An alternative ‘manual’ approach is proposed to ensure 'correct' pulse extraction and the classification process is also guided by examination of the horizontal velocity trajectory plots and source-to-site geometry. Based on the above analysis, 59 pulse-like ground motions are identified from the Canterbury earthquakes , which in the author's opinion, are caused by forward-directivity effects. The pulses are also characterised in terms of their period and amplitude. A revised version of the B07 algorithm developed by Shahi (2013) is also subsequently utilised but without observing any notable improvement in the pulse classification results. A series of three chapters are dedicated to assess the predictive capabilities of empirical models to predict the: (i) probability of pulse occurrence; (ii) response spectrum amplification caused by the directivity pulse; (iii) period and amplitude (peak ground velocity, PGV) of the directivity pulse using observations from four significant events in the Canterbury earthquakes. Based on the results of logistic regression analysis, it is found that the pulse probability model of Shahi (2013) provides the most improved predictions in comparison to its predecessors. Pulse probability contour maps are developed to scrutinise observations of pulses/non-pulses with predicted probabilities. A direct comparison of the observed and predicted directivity amplification of acceleration response spectra reveals the inadequacy of broadband directivity models, which form the basis of the near-fault factor in the New Zealand loadings standard, NZS1170.5:2004. In contrast, a recently developed narrowband model by Shahi & Baker (2011) provides significantly improved predictions by amplifying the response spectra within a small range of periods. The significant positive bias demonstrated by the residuals associated with all models at longer vibration periods (in the Mw7.1 Darfield and Mw6.2 Christchurch earthquakes) is likely due to the influence of basin-induced surface waves and non-linear soil response. Empirical models for the pulse period notably under-predict observations from the Darfield and Christchurch earthquakes, inferred as being a result of both the effect of nonlinear site response and influence of the Canterbury basin. In contrast, observed pulse periods from the smaller magnitude June (Mw6.0) and December (Mw5.9) 2011 earthquakes are in good agreement with predictions. Models for the pulse amplitude generally provide accurate estimates of the observations at source-to-site distances between 1 km and 10 km. At longer distances, observed PGVs are significantly under-predicted due to their slower apparent attenuation. Mixed-effects regression is employed to develop revised models for both parameters using the latest NGA-West2 pulse-like ground motion database. A pulse period relationship which accounts for the effect of faulting mechanism using rake angle as a continuous predictor variable is developed. The use of a larger database in model development, however does not result in improved predictions of pulse period for the Darfield and Christchurch earthquakes. In contrast, the revised model for PGV provides a more appropriate attenuation of the pulse amplitude with distance, and does not exhibit the bias associated with previous models. Finally, the effects of near-fault directivity are explicitly included in NZ-specific probabilistic seismic hazard analysis (PSHA) using the narrowband directivity model of Shahi & Baker (2011). Seismic hazard analyses are conducted with and without considering directivity for typical sites in Christchurch and Otira. The inadequacy of the near-fault factor in the NZS1170.5: 2004 is apparent based on a comparison with the directivity amplification obtained from PSHA.
186

Measuring and modelling of volcanic pollutants from White Island and Ruapehu volcanoes: assessment of related hazard in the North Island

Grunewald, Uwe January 2007 (has links)
White Island and Ruapehu are currently the most active volcanoes in New Zealand. During non-eruptive periods, intense quiescent degassing through fumaroles can occur. The current project studies the quiescent degassing plumes, including aerosol sampling on White Island and dispersion modelling of SO₂ and PM₁₀ from White Island and Ruapehu volcanoes. Aerosol sampling from fumaroles at the crater floor on White Island volcano was carried out on 9 February and 6 April 2005. The exposed filters were analysed for various anions and cations and the particle mass concentration and molar concentration determined. Major elemental constituents were sodium and chlorine (Na⁺: 413 µg m⁻³, Cl⁻: 1520 µg m⁻³), which show best correlation at both sampling sessions. Other ions detected, with little correlation, are Ca²⁺, PO₄³⁻ and to a certain extent Mg²⁺. Other constituents found, which cannot correlate explicitly to other ions, are K⁺, NH₄⁺, NO₃⁻, and SO₄²⁻. SEM study of one exposed filter was performed and mainly NaCl particles could be distinguished due to their well-defined cubic shape. The Air Pollution Model (TAPM) was used for dispersion modelling of SO₂ (models 1-4) and PM₁₀ (models 5 and 6) from White Island and Ruapehu volcanoes. Annual modelling was performed using different parameters of emission rate, exit temperature and exit velocity. The resulting plume dispersions show relatively low concentrations at ground level ≤10 m), particularly for the models of PM₁₀ dispersion. TAPM calculated the highest SO₂ ground level concentrations with model 4, where the NES values of 350 and 570 µg m⁻³ were exceeded several times. The data was then used for detailed hazard assessment of urban population in the North Island. The meteorological data from annual modelling was used for model evaluation and compared with observation data from different weather stations by statistical calculations. Overall, TAPM performed well with most good and very good results. To evaluate SO₂ dispersion modelling, airborne plume measurements were carried out on 22 November 2006 by plume traverses at 3, 10 and 20 km. Although there is some variation, the calculated correlation coefficients indicate good model results for two plume traverses at 3 and 20 km and one plume traverse at 10 km. The meteorological data was also used for model evaluation, and the results indicate good model performance. TAPM is therefore suggested for future studies when more observation data are available to verify the calculated model data.
187

A model to integrate the management of hazards and disasters in the national sustainable development planning of the Maldives

Jameel, Ahmed January 2007 (has links)
The small land area of the islands of the Maldives, combined with high population density, makes the communities of these islands vulnerable to natural disaster events such as flooding and tsunami. The Indian Ocean Tsunami on 26 December 2004 impacted 69 islands of the Maldives, killing 82 people, leaving 26 people missing and 15, 000 people internally displaced, making it the worst disaster in recorded history. Following the event, the Government of the Maldives announced a Safer Island Development Programme which seeks to provide the infrastructure necessary to adapt to natural disasters. The key focus of disaster management is to reduce the vulnerability of the communities exposed to hazards and risks, and to help them to enhance their resilience. Efforts have been made to develop safer and sustainable communities in all corners of the developed and developing worlds. New Zealand Government announced its effort to build safe and secure communities in 2007 while at a local level the Christchurch City Council published the Safer Christchurch Strategy in 2005. Overseas, the Community Strategy 2000, outlines the vision of "A safe and strong Island" at Isle of Wight United Kingdom. The islands of the Maldives have natural characteristics which make them vulnerable to disasters such as tsunami. This research has been able to identify the relationship between these characteristics and the natural vulnerability of the islands using the data that was collected following the Indian Ocean Tsunami. Out of 11 island, that have been identified for the Safer Islands Development Programme, one island is found to have very high natural vulnerability and 5 islands a high natural vulnerability, from the island vulnerability index model developed through this study. The Island Vulnerability Index model could be used to enhance the present Safer Island Development Programme island selection criteria, to reduce the possibility of 'building risk' into the infrastructure development on the islands. The index could also be used in the Environmental Impact Assessment studies to address the issue of disasters, effective resources allocation in the Public Sector Infrastructure Programme for 'building back better', and resource identification in land use planning.
188

Delineating debris-flow hazards on alluvial fans in the Coromandel and Kaimai regions, New Zealand, using GIS.

Welsh, Andrew James January 2007 (has links)
Debris-flows pose serious hazards to communities in mountainous regions of the world and are often responsible for loss of life and damages to infrastructure. Characterised by high flow velocity, large impact forces and long runout, debris-flows have potential discharges several times greater than clear water flood discharges and possess much greater erosive and destructive potential. In combination with poor temporal predictability, they present a significant hazard to settlements, transport routes and other infrastructure located at the drainage points (fan-heads) of watersheds. Thus, it is important that areas vulnerable to debris-flows are identified in order to aid decisions on appropriate land-uses for alluvial fans. This research has developed and tested a new GIS-based procedure for identifying areas prone to debris-flow hazards in the Coromandel/Kaimai region, North Island, New Zealand. The procedure was developed using ESRI Arc View software, utilising the NZ 25 x 25 m DEM as the primary input. When run, it enabled watersheds and their associated morphometric parameters to be derived for selected streams in the study area. Two specific parameters, Melton ratio (R) and watershed length were then correlated against field evidence for debris-flows, debris-floods and fluvial processes at stream watershed locations in the study area. Overall, strong relationships were observed to exist between the evidence observed for these phenomena and the parameters, thus confirming the utility of the GIS procedure for the preliminary identification of hydrogeomorphic hazards such as debris-flow in the Coromandel/Kaimai region study area. In consideration of the results, the procedure could prove a useful tool for regional councils and CDEM groups in regional debris-flow hazard assessment for the identification of existing developments at risk of debris-flow disaster. Furthermore, the procedure could be used to provide justification for subsequent, more intensive local investigations to fully quantify the risk to people and property at stream fan and watershed locations in such areas.
189

A reconnaissance natural hazard assessment of Lakes Lyndon, Coleridge and Tekapo

Komen, Anita Louise January 2008 (has links)
The Canterbury Region is susceptible to a variety of natural hazards, including earthquakes, landslides and climate hazards. Increasing population and tourism within the region is driving development pressures and as more and more development occurs, the risk from natural hazards increases. In order to avoid development occurring in unacceptably vulnerable locations, natural hazard assessments are required. This study is a reconnaissance natural hazard assessment of Lakes Lyndon, Coleridge and Tekapo. There is restricted potential for development at Lake Lyndon, because the land surrounding the lake is owned by the Crown and has a number of development restrictions. However, there is the potential for conservation or recreation-linked development to occur. There is more potential for development at Lake Coleridge. Most of the land surrounding the lake is privately owned and has less development restrictions. The majority of land surrounding Lake Tekapo is divided into Crown-owned pastoral leases, which are protected from development, such as subdivision. However, there are substantial areas around the lake, which are privately owned and, therefore, have potential for development. Earthquake, landslide and climate hazards are the main natural hazards threatening Lakes Lyndon, Coleridge and Tekapo. The lakes are situated in a zone of active earth deformation in which large and relatively frequent earthquakes are produced. A large number of active faults lie within 15 km of each lake, which are capable of producing M7 or larger earthquakes. Ground shaking, liquefaction, landslides, tsunami and seiches are among the consequences of earthquakes, all of which have the potential to cause severe damage to lives, lifelines and infrastructure. Landslides are also common in the landscape surrounding the lakes. The majority of slopes surrounding the lakes are at significant risk from earthquake-induced failure under moderate to strong earthquake shaking. This level of shaking is expected to occur in any 50 year period around Lakes Lyndon and Coleridge, and in any 150 year period around Lake Tekapo. Injuries, fatalities and property damage can occur directly from landslide impact or from indirect effects such as flooding from landslide-generated tsunami or from landslide dam outbreaks. Lakes Lyndon, Coleridge and Tekapo are also susceptible to climate hazards, such as high winds, drought, heavy snowfall and heavy rainfall, which can lead to landslides and flooding. Future climate change due to global warming is most likely going to affect patterns of frequency and magnitudes of extreme weather events, leading to an increase in climate hazards. Before development is permitted around the lakes, it is essential that each of these hazards is considered so that unacceptably vulnerable areas can be avoided.
190

Constitutive modeling and finite element analysis of slowly moving landslides using hierarchical viscoplastic material model.

Samtani, Nareshkumar Chandan January 1991 (has links)
The prediction of motion of slowly moving landslides, also referred to as creeping slopes, is important for the reduction of landslide hazards. Such continuous and slowly moving landslides do not represent the usual stability problems of geotechnical analysis because these slopes are neither still nor ruptured but they move. For proper modeling of the motion of landslides, it is essential to develop improved techniques that integrate appropriate modeling of geological materials involved, laboratory and field tests, and verifications using computational methods. This dissertation focusses attention on the development of such an appropriate model for the time-dependent behavior of creeping landslides. Based on field observations it is proposed that the phenomenon of creeping landslides can be considered as involving the motion of a large mass of soil over a parent (fixed) mass with pronounced shear deformations occuring in a thin layer between the moving mass and the parent mass. The thin layer is refered to as interface zone while the overlying mass is refered to as solid body. The generalized Hierarchical Single Surface (HiSS) series of plasticity models are adopted to characterize the solid body. The interface zone is modeled using the specialization of the HiSS models for conditions occuring in the thin layer. Time dependency is introduced in constitutive models by adopting Perzyna's elastoviscoplastic formulation. The parameters for the HiSS and interface models are determined from laboratory tests on soils obtained from an actual slowly moving landslide at Villarbeney in Switzerland. Triaxial tests along various stress paths and oedemeter tests are conducted for the solid body. New analytical solutions are derived for prediction of oedometer tests. A general procedure for determination of viscous parameters is developed and techniques to process raw creep test data are proposed. Novel and representative simple shear interface tests are conducted to find parameters for the interface model. Special techniques for experimental analysis have been developed. A modified interface model to simulate the observed phenomenon of only compaction under shear is proposed. The parameters for the constitutive models are verified by numerically backpredicting experimental tests. An existing finite element code has been modified to incorporate various aspects of the small strain elastoviscoplastic formulation. Field measurements in the form of inclinometer profiles at various borehole locations on Villarbeney landslide are available. These inclinometer profiles are predicted using the proposed model. A comparison of the field measurements and the results from finite element analysis shows that such a model can be successfully used for predicting the behavior of slowly moving landslides.

Page generated in 0.0213 seconds